Whitehead Researchers Map Chromosome

By Eric Richard

Researchers at the Whitehead Institute of Biology, a non-profit research foundation headquartered in Boston in October when they completed the first map of a human chromosome as part of the Human Genome Project. The group, which included Professor of Biology Susan Golfam and collaborators at the University of Colorado and the Salk Institute discovered a gene responsible for determining the sex of the Y chromosome.

In the Oct. 2 issue of Science, researchers led by David Page, associate professor in the Department of Biology at MIT and will be appointed a professor of biology at MIT and will have resigned his post as director of the Whitehead Institute of Science, researchers led by David Page, associate professor in the Department of Biology at MIT and will be appointed a professor of biology at MIT and will have resigned his post as director of the Whitehead Institute of Science.

The ultimate goal of the Genome Project is to determine the actual genetic map of all human chromosomes. Page explained that the Y chromosome is particularly mysterious because it is difficult to investigate through family inheritance. "I think the biology of the Y chromosome can only be explored from the DNA level up," Page said. "Since this map is anchored in the sequence itself, it can melt away into the sequence of the chromosome.

Page said that the work has set the stage for constructing a more detailed map for determining the exact order of the remaining bases in DNA. "If one can make such maps for the Y chromosome, then the same can be done for the rest of the genome," Page said. "In human genetics we are excited about the fact that in the next few years we will have similar maps of the other chromosomes.

Learning deficiency gene found

In a separate project, Tonegawa and collaborators described a gene responsible for a learning deficiency in mice. The discovery is expected to lead to new treatments for memory loss, anxiety, and stress.

In the Oct. 2 issue of Science, Tonegawa and collaborators showed that mice lacking the gene behave normally in non-learning tests but have difficulty understanding spatial relationships.

The ultimate goal of the Genome Project is to determine the actual genetic map of all human chromosomes. Page explained that the Y chromosome is particularly mysterious because it is difficult to investigate through family inheritance. "I think the biology of the Y chromosome can only be explored from the DNA level up," Page said. "Since this map is anchored in the sequence itself, it can melt away into the sequence of the chromosome.

Page said that the work has set the stage for constructing a more detailed map for determining the exact order of the remaining bases in DNA. "If one can make such maps for the Y chromosome, then the same can be done for the rest of the genome," Page said. "In human genetics we are excited about the fact that in the next few years we will have similar maps of the other chromosomes.

Learning deficiency gene found

In a separate project, Tonegawa and collaborators described a gene responsible for a learning deficiency in mice. The discovery is expected to lead to new treatments for memory loss, anxiety, and stress.

In the Oct. 2 issue of Science, Tonegawa and collaborators showed that mice lacking the gene behave normally in non-learning tests but have difficulty understanding spatial relationships.

The ultimate goal of the Genome Project is to determine the actual genetic map of all human chromosomes. Page explained that the Y chromosome is particularly mysterious because it is difficult to investigate through family inheritance. "I think the biology of the Y chromosome can only be explored from the DNA level up," Page said. "Since this map is anchored in the sequence itself, it can melt away into the sequence of the chromosome.

Page said that the work has set the stage for constructing a more detailed map for determining the exact order of the remaining bases in DNA. "If one can make such maps for the Y chromosome, then the same can be done for the rest of the genome," Page said. "In human genetics we are excited about the fact that in the next few years we will have similar maps of the other chromosomes.

Learning deficiency gene found

In a separate project, Tonegawa and collaborators described a gene responsible for a learning deficiency in mice. The discovery is expected to lead to new treatments for memory loss, anxiety, and stress.

In the Oct. 2 issue of Science, Tonegawa and collaborators showed that mice lacking the gene behave normally in non-learning tests but have difficulty understanding spatial relationships.

The ultimate goal of the Genome Project is to determine the actual genetic map of all human chromosomes. Page explained that the Y chromosome is particularly mysterious because it is difficult to investigate through family inheritance. "I think the biology of the Y chromosome can only be explored from the DNA level up," Page said. "Since this map is anchored in the sequence itself, it can melt away into the sequence of the chromosome.

Page said that the work has set the stage for constructing a more detailed map for determining the exact order of the remaining bases in DNA. "If one can make such maps for the Y chromosome, then the same can be done for the rest of the genome," Page said. "In human genetics we are excited about the fact that in the next few years we will have similar maps of the other chromosomes.

Learning deficiency gene found

In a separate project, Tonegawa and collaborators described a gene responsible for a learning deficiency in mice. The discovery is expected to lead to new treatments for memory loss, anxiety, and stress.

In the Oct. 2 issue of Science, Tonegawa and collaborators showed that mice lacking the gene behave normally in non-learning tests but have difficulty understanding spatial relationships.

The ultimate goal of the Genome Project is to determine the actual genetic map of all human chromosomes. Page explained that the Y chromosome is particularly mysterious because it is difficult to investigate through family inheritance. "I think the biology of the Y chromosome can only be explored from the DNA level up," Page said. "Since this map is anchored in the sequence itself, it can melt away into the sequence of the chromosome.

Page said that the work has set the stage for constructing a more detailed map for determining the exact order of the remaining bases in DNA. "If one can make such maps for the Y chromosome, then the same can be done for the rest of the genome," Page said. "In human genetics we are excited about the fact that in the next few years we will have similar maps of the other chromosomes.

Learning deficiency gene found

In a separate project, Tonegawa and collaborators described a gene responsible for a learning deficiency in mice. The discovery is expected to lead to new treatments for memory loss, anxiety, and stress.

In the Oct. 2 issue of Science, Tonegawa and collaborators showed that mice lacking the gene behave normally in non-learning tests but have difficulty understanding spatial relationships.