UA Ballots Recovered; Suspects Questioned by Campus Police

By Reuven M. Lerner

A large number of Undergraduate Association election ballots, stolen along with a ballot box on March 11 from a, Lobby 7 polling station, were returned in a cardboard box just after 12:15 a.m. today.

An anonymous female caller told The Tech that the box would be found in "Lobby 7, on the left side, post office, in a cardboard box." A subsequent investigation revealed a closed cardboard box containing a brown garbage bag: Campus Police later confirmed that the box, which was retrieved by Patrolman Paul V. Conway at about 1:30 a.m., contained UA ballots.

At press time, it was not known whether the cardboard box contained all of the stolen ballots, which numbered over 600.

The ballots' reappearance came just a few days after the Office of the Dean for Student Affairs revealed that, on the Campus Police, would take action against four students implicated in the incident.

Three of the four students — Ross A. Lippert '93, Valerie J. Ohm '90, and Peter S. Steeley '95 — said yesterday that they each gave Campus Police a statement concerning the theft about one week before spring break.

Campus Police, the UA, and James R. Tewhey, associate dean for residence and campus activities, refused to release, confirm, or deny the names of any of the students involved.

Tewhey explained that he did not want to release the names of any students under investigation because "this will probably be an ongoing case." Tewhey updated UA President Stacy E. McGeever '93, Vice President J. Paul Kirby '92, and Director of Physical Plant, Robert A. Chitaley '95 on the thefts at a meeting earlier this week.

While the Dean's Office has implicated a total of five students in the theft, only four had been questioned as of that afternoon.

MIT Proposes National Standard for Digital TV

By Karen Kaplan

In the year 2000, high definition television sets will be in millions of living rooms across America. In fact, HDTV will revolutionize modern television, when it was first introduced in the 1950's.

So says Jae S. Lim '74, a professor of electrical engineering and computer science who works in digital signal processing, speech processing, and image processing. Lim leads the MIT Advanced Television Research Program, and his research group has developed an HDTV system based on digital technology.

"We've been working on a group project, which was built by General Instrument in San Diego, is one of five models under consideration by the Federal Communications Commission, and it's one of the five models for official approval as the nationwide HDTV standard by the middle of next year.

"Each HDTV system has different special features, and MIT's is not the best in every aspect," Lim said modestly. "But I would like to think that MIT has the best record overall in designing a system."

HDTV system models were also submitted by AT&T, Zenith, the Advanced Television Research Consortium, whose members include NBC, the European companies Philips and Thompson, and a Japanese firm. General Instrument also submitted a second entry.

Why HDTV?

High definition television has "very significant improvements relative to the National Television Systems Committee television service," which is the current standard for televisions, Lim said. These improvements include:

- Increased picture clarity. "The fine details are a lot better," said Lim. "It's an improvement of about 400 percent."

With NTSC television, the screen is divided into a grid of 340 by 420 pixels, or picture elements. An HDTV screen's grid is 720 by 1280 pixels, producing a much higher resolution.

- Smoother motion. HDTV runs at 60 frames per second, twice the frame rate of NTSC, so figures move more smoothly on the screen.

- No "ghosting." Lim said HDTV eliminates the "ghost effect" and "snow in the background" that sometimes appear in NTSC television broadcasts. "With the new system, either you see it or you don't see it, and when you do you don't see it spectrually," he said.

- Better aspect ratio. The width to height ratio on current televisions is 4 to 3, and the dimensions were set 40 years ago when motion picture screens were square. The aspect ratio for HDTV sets is 16 to 9, and the wider screens allow for panoramic filming. Also, because HDTVs have higher resolution, television screens can be bigger.

UA Elects David J. Kenzer '96, however, there were many valid objections to the proposal. "None of the people I talked to in my constituency were interested in doing it. I personally didn't think it was a good idea ... no governmental body taxes by referendum." Referendum format debated Although most council members supported the idea of transferring control of activities funding from the administration to students, there was widespread disagreement on how to determine the size of the student life fee, as is known. The proposal provided for two referenda: one to determine if students want to control funding for activities, and a second to allow students to actually set the fee. Some council members expressed concern that students were not competent enough to fairly determine the future of such a fee. "I think some people were afraid that the students would set the fee too high or too low," Kirby said. "The effect was to say that the students couldn't vote. I'm disappointed that the UA didn't give students the opportunity to decide for themselves. The idea that there is a question that should go before the student body is wrong," Kirby said.

UA Election Commissioner Raajnish A. Chitaley '95 originally proposed that the UA form a ten-member elected committee to set student body fees.

MIT'S Oldest and Largest Newspaper

Volume 112, Number 17

CAMBRIDGE, MASSACHUSETTS 02139

Friday, April 3, 1992

UA Proposes National Standard for Digital TV

By Karen Kaplan

In the year 2000, high definition television sets will be in millions of living rooms across America. In fact, HDTV will revolutionize modern television, when it was first introduced in the 1950's.

So says Jae S. Lim '74, a professor of electrical engineering and computer science who works in digital signal processing, speech processing, and image processing. Lim leads the MIT Advanced Television Research Program, and his research group has developed an HDTV system based on digital technology.

"We've been working on a group project, which was built by General Instrument in San Diego, is one of five models under consideration by the Federal Communications Commission, and it's one of the five models for official approval as the nationwide HDTV standard by the middle of next year.

"Each HDTV system has different special features, and MIT's is not the best in every aspect," Lim said modestly. "But I would like to think that MIT has the best record overall in designing a system."

HDTV system models were also submitted by AT&T, Zenith, the Advanced Television Research Consortium, whose members include NBC, the European companies Philips and Thompson, and a Japanese firm. General Instrument also submitted a second entry.

Why HDTV?

High definition television has "very significant improvements relative to the National Television Systems Committee television service," which is the current standard for televisions, Lim said. These improvements include:

- Increased picture clarity. "The fine details are a lot better," said Lim. "It's an improvement of about 400 percent."

With NTSC television, the screen is divided into a grid of 340 by 420 pixels, or picture elements. An HDTV screen's grid is 720 by 1280 pixels, producing a much higher resolution.

- Smoother motion. HDTV runs at 60 frames per second, twice the frame rate of NTSC, so figures move more smoothly on the screen.

- No "ghosting." Lim said HDTV eliminates the "ghost effect" and "snow in the background" that sometimes appear in NTSC television broadcasts. "With the new system, either you see it or you don't see it, and when you do you don't see it spectrally," he said.

- Better aspect ratio. The width to height ratio on current televisions is 4 to 3, and the dimensions were set 40 years ago when motion picture screens were square. The aspect ratio for HDTV sets is 16 to 9, and the wider screens allow for panoramic filming. Also, because HDTVs have higher resolution, television screens can be bigger.