Motor vehicle traffic on the Harvard Bridge has been limited to two lanes of cars for the past year and may be closed to all motorists when repairs begin.

By Tony Zamparutti
(Editor's note: This is the second of a five-part series on the plans for the Harvard Bridge.)

The Metropolitan District Commission (MDC) plans to replace the superstructure of the Harvard Bridge because of cracks in the hangers that join sections of the bridge.

The cracks became a major concern after the collapse of a similarly-constructed bridge on Interstate 95 in Greenwich, Connecticut. One of the bridge's hanger joints failed and an entire section of the bridge fell into the Mianus River, killing three people.

Inspectors who examined the Harvard Bridge following the Connecticut failure discovered cracks in several hangers and found one hanger broken.

Construction is set to begin in the spring of 1986, according to David Lenhard, a senior engineer for the Commission.

The cracks of the Harvard Bridge were discovered when a motorist discovered cracks in several hangers and found one hanger broken.

The fastest way to replace the bridge, however, would be to disassemble it completely and remove the entire superstructure of the bridge, according to Ronald Sadowski, special assistant to the chairman of the MDC Corporation.

The MDC has the authority to purchase the entire bridge, including its superstructure, for $16.5 million, according to the preliminary design plans made by the Parvico Engineering Company.

The new design will feature a superstructure that is supported by a series of girders, which are supported by the bridge's piers.

The girders support the superstructure of the Harvard Bridge, which is hinged at both ends, and are designed to carry the load of the bridge. The girders are supported by the bridge's piers, which are designed to carry the load of the bridge.

The girders support the superstructure of the Harvard Bridge, which is hinged at both ends, and are designed to carry the load of the bridge. The girders are supported by the bridge's piers, which are designed to carry the load of the bridge.