nuclear weapons proposed by Oppenheimer now present the greatest danger to peace. "Tactical nuclear weapons are far more dangerous to world peace than strategic ones" and now present such a threat, because these weapons "are not only for deterrence but also for actual use," he declared.

"I'm advising the unilateral move to get rid of" nuclear artillery shells to reduce immediate threats from nuclear weapons, said Dyson.

Dyson also attacked present military strategies that assume widespread use of tactical nuclear weapons. "We need above all to have sound and realistic military doctrines."

"The world is looking for a scholar-soldier like Oppenheimer to move the world back to security," declared Dyson.

When asked how to prevent students from designing new weapons, Dyson replied: "There hasn't been a single interesting invention in the field of nuclear weapons since 1955; scientists are no longer attracted to research that is designed to produce nuclear weapons. "On the other hand, revelations in computer technology attract many new scientists."

Another member of the audience asked Dyson how, in his opinion, the spread of nuclear weapons to other countries could be halted. "The answer is to be declaratory... The countries that are in for nuclear weapons mostly did so at the instigation of scientists, not generals," he claimed. By declassifying the methods to design nuclear weapons "all the joy" of making bombs for scientists in other countries would be removed.

Finboard to run unused fund

By Howard D. Trachtman

Associate Dean for Student Affairs Robert J. Holden will transfer control of the Undergraduate Publications Trust to the Undergraduate Association Finance Board (FinBoard).

The fund, started in 1935, has a total worth of $8346.42. The fund has not been touched since the 1950's, according to Holden.

Although the fund was intended to provide emergency loans for campus newspapers, both Holden and Dean for Student Affairs Shirley M. McBey think the money should be used for other newspaper-related expenses.

McBey said that "it would be a good idea to have more than one MIT newspaper". She noted there should be an alternative news source, especially for MIT students. If a grant were given to a new newspaper it should be "an initial grant only, the paper should be sustaining afterwards," said McBey.

Holden said the money should be used either to help out a publication in financial difficulty or to start a new publication.

Holden also wished this and similar funds will be "matched up well with the money the secretory requests." Holden is presently administrator of the publications funds, according to McBey.

Samuel M. Austin III '82, Chairman of the Association of Student Activities (ASA), agreed that the money should be used as soon as possible to either aid an existing newspaper or start a new one. He added that student input should be sought through FinBoard in this case and similar situations in the future.

Director of Financial Operations John A. Currie was not aware that the Undergraduate Publications Fund existed, and could not be reached for further comment.

DOCTORAL CANDIDATES
CAREER OPPORTUNITIES WITH GENERAL ELECTRIC

Opportunities are expected to be available in several locations throughout the Company for engineering and science PhD's with training and interest in many technical areas briefly listed here. Details of specific openings are given in the booklet, Doctoral Work at General Electric—Requirements for 1981-82, available at your placement office.

If you are a PhD candidate, plan to talk with one of our interviewers or send your resume together with a letter expressing your work interests to Doctoral Recruiting, Building 36-514, Schenectady, N.Y. 12345.

U.S. citizens or permanent resident visa holders only.

CHEMISTRY, CHEMICAL ENGINEERING

Inorganic materials: gas-solid chemical phenomena; coal gasification: polymer characterization: free radical polymer synthesis; electrical insulation systems; lamp phosphors; corrosion technology; surface chemistry; synthesis of organic and organometallic compounds; abrasion and crazing phenomena; thin film amorphous silicon IC processing; solder soft past processes; photocathode material development.

MECHANICAL ENGINEERING, ENGINEERING MECHANICS

Combustion kinetics; gas turbine combustors; CAD/CAM implementation; high speed manufacturing equipment; adaptive control for manufacturing processes; thermal hydraulic behavior; dynamic and seismic analysis of nuclear power plants; fuel bundle and core design; robotic systems: heat transfer: aerodynamics and superconductivity; fluid mechanics; heat transfer and multiphase flow; solid mechanics problems: solar collector design failure mechanisms: turbomachinery.

MATHEMATICS SCIENCE, METALLURGY, CERAMICS

PHYSICS, APPLIED PHYSICS

ENGINEERING COMPUTERS, COMPUTER ENGINEERING, COMPUTER SCIENCE