Proposed UA constitution blasted

By William Clime

Tom Colten '80, Finance Board (Finboard) Chairman, and Jerry Hammond '78, Nominations Committee (NomComm) Chairman, have both expressed their disapproval of the proposed Undergraduate Association (UA) Constitution.

Colton, who is also Interfraternity Council (IFC) Financial Management Chairman and an Activities Development Board (ADB) member, said recently that he found no merit in the new proposal vague and ineffective solution to many of the problems presently plaguing the student government.

Hammond, who is also an IFC Judicial Committee member, stated that he saw no need for a new UA constitution: "what the UA needs is not a new constitution but rather a new group of people who can do something with the present constitution. There is too much time being spent on trying to write a constitution and not enough time spent on actually helping the student body."

One problem Colten sees with the proposal is the method by which students gain a position on the General Assembly (GA). The new constitution would establish a mechanism by which GA members would be elected by a petition containing 30 signatures. Colton pointed out that this may lead to a distinct imbalance of living group representation in the GA. It is quite conceivable that more dorm members would have seats on the GA that fraternity members. Colton added that the new constitution provides no method by which equal representation in the GA is ensured. Hammond added that this selection will not provide a good cross-section of representation. The GA membership will ultimately consist of the people who are already actively participating in student politics.

Colton stated that a major drawback of the proposed constitution is its vagueness. For example, the proposal states that the membership of the steering committee is to be determined by the UA By-Laws. This was an unnecessary ambiguity which should have been clarified in the proposal, according to Colten.

Colton stated that the new proposal is very impractical and will not improve the effectiveness of the GA, despite claims to the contrary. "The GA has no purpose. This has not been provided in the old constitution and is not provided in the new, proposed constitution," Colton stated.

Colton said that the "GA has a unifying purpose which will ultimately benefit the student body.

Colton stated that acceptance of the GA as a governing body is not well received at MIT. "The GA has not proven itself as a governing body. As a result, standing committees such as Nominations Committee, FinBoard and the ASA will not recognize the GA in any form," Colton said. He added that "there is a reason to have a GA, but it should be more than to throw parties."

Colton did not state what this reason should be.

Ting's new particle smashing

By John Maltitoss

Recently a group of MIT physicists acting as part of an international team of physicists under the leadership of Nobel Laureate Dr. Samuel C. Ting used the powerful colliding beam facility of the DESY/PETRA facility in Hamburg, Germany to collide 5 GeV (billion electron volts) electron and positron beams. These collisions were expected to produce two jet streams of particles from a pair of quarks, but a third, smaller jet stream of particles was observed which is believed to come from gluon decays. According to Dr. Ting, this is the first direct evidence that gluons play an important role in sub-nuclear forces.

In the last decade, physicists have learned that atomic forces are carried by light rays. Inside the atom, the dense nuclear matter is made out of protons and neutrons and many sub-atomic particles. The nuclear forces are carried by means which were discovered in the late 1940's.

Nuclear particles themselves are thought of as yet-uncharged particles known as quarks. In a definitive experiment carried out in 1968 at the Stanford Linear Accelerator Center (SLAC) by professors Henry Kendall and Jerome Friedman of MIT's Department of Physics and Laboratory for Nuclear Science, and Dr. Richard Taylor of SLAC and collaborators, it was shown that nuclear matter is made out of small, hard "balls" very much like quarks. In 1974, the discovery of the J particle at the Brookhaven National Laboratory by an MIT group led by Professor Ting and at SLAC by a group directed by Professor Burton Richter, added to subsequent discoveries of a new family of particles called Deutches Electronen-Synchron (DESY) and SLAC, which have shown that there are many kinds of quarks, and also that the forces between the quarks are thought of as being carried by yet another particle called "gluons". According to Ting, the gluon is the carrier agent of quark forces in the same as light rays are the carrier agent of electric forces which hold the atom together.

Preliminary results of the Ting Group discovery were reported at the International Photon Conference held recently at the Fermi National Accelerator Laboratory in Batavia, Ill. Other preliminary indications of gluon effects were reported simultaneously at the Batavia conference by other groups from DESY.

Dr. Ting asserted that much more work has to be done to understand the detailed properties of the gluon. It is considered promising, however, that gluons may be one of the necessary links in the understanding of the fundamental laws of nuclear forces.

Search for new dean drawing to a close

By Steven Solnick

The administration hopes on the search for a new Dean for Student Affairs has entered its "final stage" after a meeting Friday according to members of the committee.

The group "will be reporting to the Chancellor through Vice-President Simmons, hopefully soon," according to its chairman, Professor Anthony French. French told The Tech that the committee is preparing to submit a list of 2 to 4 candidates to the Chancellor. The post of Dean for Student Affairs was vacated by Chancellor. The post of Dean for Student Affairs has entered its "final stage", but the committee was plagued over the summer with difficulties in assembling both its membership and the interviewees chosen from over 300 applicants.

The selection of a new Dean has been a year-long review of the Office of the Dean for Student Affairs (ODSA) headed by Vice-President Constance Simmons. As a result of this review, the ODSA has been reorganized into four sections: Undergraduate Academic Assistance (UAS), Student Assistance Services (SAS), Residence Programs, and Activities. The new structure has been published on posters distributed around the Institute.

The restructuring has been accompanied by several personnel changes, among them: the departure form the ODSA of Assistant Dean Alice Sodinger, the shift of Assistant Dean Benny Keller from UAS to SAS, the addition of Assistant Dean Robert Randolph, and the naming of International Student Advisor Eugen Chamberlain as Associate Dean.

Ting's new particle smashing

By John Maltitoss

Recently a group of MIT physics acting as part of an international team of physicists under the leadership of Nobel Laureate Dr. Samuel C. Ting used the powerful colliding beam facility of the DESY/PETRA facility in Hamburg, Germany to collide 5 GeV (billion electron volts) electron and positron beams. These collisions were expected to produce two jet streams of particles from a pair of quarks, but a third, smaller jet stream of particles was observed which is believed to come from gluon decays. According to Dr. Ting, this is the first direct evidence that gluons play an important role in sub-nuclear forces.

In the last decade, physicists have learned that atomic forces are carried by light rays. Inside the atom, the dense nuclear matter is made out of protons and neutrons and many sub-atomic particles. The nuclear forces are carried by means which were discovered in the late 1940's.

Nuclear particles themselves are thought of as yet-uncharged particles known as quarks. In a definitive experiment carried out in 1968 at the Stanford Linear Accelerator Center (SLAC) by professors Henry Kendall and Jerome Friedman of MIT's Department of Physics and Laboratory for Nuclear Science, and Dr. Richard Taylor of SLAC and collaborators, it was shown that nuclear matter is made out of small, hard "balls" very much like quarks. In 1974, the discovery of the J particle at the Brookhaven National Laboratory by an MIT group led by Professor Ting and at SLAC by a group directed by Professor Burton Richter, added to subsequent discoveries of a new family of particles called Deutches Electronen-Synchron (DESY) and SLAC, which have shown that there are many kinds of quarks, and also that the forces between the quarks are thought of as being carried by yet another particle called "gluons". According to Ting, the gluon is the carrier agent of quark forces in the same as light rays are the carrier agent of electric forces which hold the atom together.

Preliminary results of the Ting Group discovery were reported at the International Photon Conference held recently at the Fermi National Accelerator Laboratory in Batavia, Ill. Other preliminary indications of gluon effects were reported simultaneously at the Batavia conference by other groups from DESY.

Dr. Ting asserted that much more work has to be done to understand the detailed properties of the gluon. It is considered promising, however, that gluons may be one of the necessary links in the understanding of the fundamental laws of nuclear forces.