Froshcon proves value of joint effort

(Continued from page 1)

At the same time, the FroshCon leadership has been working to attract more students to its meetings. They have been particularly successful in persuading prospective class office holders to attend. Only about twenty-five delegates attended this year’s first FroshCon meeting. They decided to wait until March to elect class officers, and instead adopted a system of rotating chairmen.

Such simply-phrased titles as GirlComm (investigating the possibility of enrolling more girls at MIT), HumComm (examining campus issues, the result being the first issue of the ‘74 News—paid for by funds donated by the Class of ’71) boldly stated that “All freshmen are welcome.” The aim is for a gathering of concerned students rather than the usual collection of uninterested randoms; already that goal is very nearly attained.

Only about twenty-five delegates attended this year’s first FroshCon meeting. They decided to wait until March to elect class officers, and instead adopted a system of rotating chairmen. In this way, the hassle of campaigning and elections has been eliminated, and FroshCon has been afforded the opportunity to get down to business immediately.

This is of tremendous importance. In previous years substantial losses in attendance were noted after elections had been held. Interesting, too, for the prospective class office holder is the fact that three of the four members of the Class of ’73 Executive Committee were active participants in FroshCon.

FroshCon suffers a lack of equal representation. Some houses send no representatives at all; attendance is particularly poor among the fraternities. Members are urging that any interested freshman come take part in FroshCon meetings. They regularly appeal to campus-wide publications to remind people of the meetings. Unfortunately, these calls have gone unheeded.

“Student government,” says Steve Ehrmann, “is characterized by a few people who are worried about what’s happening on this campus.” Perhaps the spirit exemplified by this year’s Freshman Council will serve to change that few to many.

The lampyridae beetle family. Delight of small boys. Biological light bulb. And prime source of raw material for another Du Pont innovation.

Luciferae, an enzymatic protein with intriguing properties, obtainable only from fireflies. Luciferin, an organic molecule also found in fireflies, but synthesizable. Adenosine triphosphate (ATP), a common energy-yielding substance found in all living cells. Those are the three main ingredients in lampyridae’s love light. And because ATP is common to all living cells, university researchers discovered they could produce an artificial glow by mixing luciferin and luciferase wherever life is present.

Noting that phenomenon, Du Pont scientists and engineers went on to develop it into a practical analytical system. Correlating the intensity of the artificial “glow” with the amount of ATP present in bacteria, they designed a means of measuring the reaction.

The result is the biometer—a device that uses the phenomenon of chemiluminescence to detect minute amounts of ATP in bacteria. The biometer can be adapted to any analytical system. It is particularly useful in detecting bacterial contamination in water, air, or other materials. It can also be used to measure the concentration of ATP in living cells.

Du Pont scientists and engineers are studying the potential applications of this new technology. They are exploring ways to use the biometer to detect bacteria in food, water, and other materials. They are also considering ways to use the biometer in the diagnosis of diseases caused by bacteria.

Du Pont scientists and engineers are also studying the potential uses of ATP as an energy source for other applications. They are exploring ways to use ATP as a source of energy for biological systems, such as cells and tissues. They are also considering ways to use ATP as a source of energy for chemical processes, such as those that occur in industrial processes.

In addition, Du Pont scientists and engineers are studying the potential uses of ATP as a source of energy for electronic devices. They are exploring ways to use ATP as a source of energy for electronic devices, such as those used in computers and other electronic equipment.

Du Pont scientists and engineers are also studying the potential uses of ATP as a source of energy for other applications. They are exploring ways to use ATP as a source of energy for other applications, such as those used in transportation and other industries. They are also considering ways to use ATP as a source of energy for other applications, such as those used in manufacturing and other industries.

If you care enough, maybe you can meet the Paulist challenge...

It isn’t easy, being a Paulist. Bridging gaps between young and old, traditional and modern, past and future. But it is a challenge. Paulist mission is to people... individually and in all the societies in which they live... to discover Christ... to love in Jesus Christ... to be attuned to the needs of the present, yet to form a vision of tomorrow’s world... if you are interested in finding out more about the Paulist priestly challenge, write to:

Rev. Donald C. Campbell, C.S.P.
Secretary to Provincial Board
Room 117
415 West 59th Street
New York, N,Y. 10019

Du Pont Company
Room 720, Wilmington, De 19898
I’d like your latest information on opportunities at Du Pont for graduates with degrees in ________________________
Name ______________
University ________________________
Degree ________________________
Graduation Date ______________
Address ________________________
City ________________________
State ________________________
Zip ________________________

An Equal Opportunity Employer (EEO)
Ventures for better living.