Grad students oppose war in sparse GSC balloting

By Mike Milichau

In a poll reviewing the Graduate Student Council's referendum of last May which damned the war in Vietnam as "unjust," a qualified affirmation of the GSC's stand was taken. Fifty percent of the graduate students responding oppose the Vietnam War.

Sent out to all faculty and graduate students in the October issue of the Catalyst, the GSC newsletter, the questionnaire was returned by 36% of the graduate student population and by 15% of the faculty. Because of this limited sampling of the graduate student population, the results of this poll might be interpreted as biased.

Danish problems proper

Despite the strong language of the statement of the question, only 17% endorsed an immediate withdrawal of United States troops. Refuting the attitude of most Americans, most of the war opposition (76%) reasoned that "the high cost of the war, diverting our efforts away from domestic problems." Lithuania was one of the few students who believed that it would replace the former president of the student body.

Facially opposed

The breakdown of the poll into faculty, GSC graduate students, and US graduate students brought about an interesting result. Although 52% felt that national political issues came under the "radical" philosophy, 24% felt that they were more inclined to the "hawk" philosophy.

Winter Weekend meets with favor in early stages

The new Winter Weekend, with its expanded scope and ambitions, hit out with a favorable reception since the first announcement but it would replace the former council. The Student CouncilNewsletter, Word from the offi-

Glove fight elimination proposed by ad hoc Field Day committee

By Jack Katz

Elimination of the glove fight was among the main changes agreed to by an ad hoc committee evaluating Field Day. The committee, headed by John Oliver III, articulated what they thought were the objectives of Field Day and recommended several revisions of Field Day to accomplish these objectives.

Several of these proposals were brought before the Incomex Executive Committee meeting last night and will be presented at the Incomex meeting Thursday at 7:30 p.m.

Problem with Field Day

The ad hoc committee cited four major problems which they felt needed to be alleviated.

Too few people were spending their preparation time in the early stages.

Several of these few students were falling behind in their studies during this preparation. Field Day is supposed to involve total class participation.

Students in the glove fight were susceptible to many injuries.

Certain of the Field Day objectives were not being achieved. Too few people were spending their preparation time in the early stages. Field Day fives were not being achieved. The Planning Office does have the authority to call an early end.

Winter Weekend meets with favor in early stages

The new Winter Weekend, with its expanded scope and ambitions, hit out with a favorable reception since the first announcement but it would replace the former council. The Student CouncilNewsletter, Word from the offi-

Building 7 steps repaired in drive for perfection

By Photo George Flynn

Building 7 steps now repaired in drive for perfection.

The steps at the 77 Mass. Ave. entrance to Building 7, which had been in poor condition, have been repaired. The stairway has been repainted, and the brick steps have been cleaned. The work was done in order to improve the appearance of the building.

Glove fight elimination proposed by ad hoc Field Day committee

By Jack Katz

Elimination of the glove fight was among the main changes agreed to by an ad hoc committee evaluating Field Day. The committee, headed by John Oliver III, articulated what they thought were the objectives of Field Day and recommended several revisions of Field Day to accomplish these objectives.

Several of these proposals were brought before the Incomex Executive Committee meeting last night and will be presented at the Incomex meeting Thursday at 7:30 p.m.

Problem with Field Day

The ad hoc committee cited four major problems which they felt needed to be alleviated.

Too few people were spending their preparation time in the early stages.

Several of these few students were falling behind in their studies during this preparation. Field Day is supposed to involve total class participation.

Students in the glove fight were susceptible to many injuries.

Certain of the Field Day objectives were not being achieved. Too few people were spending their preparation time in the early stages. Field Day fives were not being achieved. The Planning Office does have the authority to call an early end.

The Director of the Laboratory was Dr. John H. Dolbey, Dean of Science and Head of the Department of Electrical Engineering. He is a graduate of the Massachusetts Institute of Technology (MIT) and holds a doctorate in electrical and electronic engineering from the University of Cambridge, England. He is a member of the American Physical Society and a fellow of the Franklin Institute.

Although it would eventually become the largest civilian research and development activity in the nation, the research of the early, and especially the first, years of the MIT Radiation Laboratory was concentrated on the development of radar systems. It was the first major project of its kind in the United States during World War II.

In 1940, the Laboratory was formed at the Bell Telephone Laboratories, Stanford, and MIT. One of the first efforts undertaken was the development of a new type of germanium which would render radar operations accurate over a long range. With the news of the British achievement of the "crystal" germanium in 1940, the US recognized the need to centralize its efforts in this vital field.

Efforts of Compton

Several representatives of the MIT Electrical Engineering Department, along with President Karl T. Compton, were instrumental in forming a government contract, August 1, 1940, which authorized the construction and operation of what was to become known as the MIT Radiation Laboratory. The name "Radiation Laboratory" was chosen as a cloak to conceal the true activities. It was meant to convey the impression that the laboratory's work was in the field of nuclear physics. Under this cloak were to emerge more than 600 different radar systems.

The laboratory was directed by Dr. John H. Dolbey, Dean of Science and Head of the Department of Electrical Engineering. He is a graduate of the Massachusetts Institute of Technology (MIT) and holds a doctorate in electrical and electronic engineering from the University of Cambridge, England. He is a member of the American Physical Society and a fellow of the Franklin Institute.

Although it would eventually become the largest civilian research and development activity in the nation, the research of the early, and especially the first, years of the MIT Radiation Laboratory was concentrated on the development of radar systems. It was the first major project of its kind in the United States during World War II.

In 1940, the Laboratory was formed at the Bell Telephone Laboratories, Stanford, and MIT. One of the first efforts undertaken was the development of a new type of germanium which would render radar operations accurate over a long range. With the news of the British achievement of the "crystal" germanium in 1940, the US recognized the need to centralize its efforts in this vital field.

Efforts of Compton

Several representatives of the MIT Electrical Engineering Department, along with President Karl T. Compton, were instrumental in forming a government contract, August 1, 1940, which authorized the construction and operation of what was to become known as the MIT Radiation Laboratory. The name "Radiation Laboratory" was chosen as a cloak to conceal the true activities. It was meant to convey the impression that the laboratory's work was in the field of nuclear physics. Under this cloak were to emerge more than 600 different radar systems.

The laboratory was directed by Dr. John H. Dolbey, Dean of Science and Head of the Department of Electrical Engineering. He is a graduate of the Massachusetts Institute of Technology (MIT) and holds a doctorate in electrical and electronic engineering from the University of Cambridge, England. He is a member of the American Physical Society and a fellow of the Franklin Institute.

Although it would eventually become the largest civilian research and development activity in the nation, the research of the early, and especially the first, years of the MIT Radiation Laboratory was concentrated on the development of radar systems. It was the first major project of its kind in the United States during World War II.

In 1940, the Laboratory was formed at the Bell Telephone Laboratories, Stanford, and MIT. One of the first efforts undertaken was the development of a new type of germanium which would render radar operations accurate over a long range. With the news of the British achievement of the "crystal" germanium in 1940, the US recognized the need to centralize its efforts in this vital field.

Efforts of Compton

Several representatives of the MIT Electrical Engineering Department, along with President Karl T. Compton, were instrumental in forming a government contract, August 1, 1940, which authorized the construction and operation of what was to become known as the MIT Radiation Laboratory. The name "Radiation Laboratory" was chosen as a cloak to conceal the true activities. It was meant to convey the impression that the laboratory's work was in the field of nuclear physics. Under this cloak were to emerge more than 600 different radar systems.

The laboratory was directed by Dr. John H. Dolbey, Dean of Science and Head of the Department of Electrical Engineering. He is a graduate of the Massachusetts Institute of Technology (MIT) and holds a doctorate in electrical and electronic engineering from the University of Cambridge, England. He is a member of the American Physical Society and a fellow of the Franklin Institute.

Although it would eventually become the largest civilian research and development activity in the nation, the research of the early, and especially the first, years of the MIT Radiation Laboratory was concentrated on the development of radar systems. It was the first major project of its kind in the United States during World War II.

In 1940, the Laboratory was formed at the Bell Telephone Laboratories, Stanford, and MIT. One of the first efforts undertaken was the development of a new type of germanium which would render radar operations accurate over a long range. With the news of the British achievement of the "crystal" germanium in 1940, the US recognized the need to centralize its efforts in this vital field.

Efforts of Compton

Several representatives of the MIT Electrical Engineering Department, along with President Karl T. Compton, were instrumental in forming a government contract, August 1, 1940, which authorized the construction and operation of what was to become known as the MIT Radiation Laboratory. The name "Radiation Laboratory" was chosen as a cloak to conceal the true activities. It was meant to convey the impression that the laboratory's work was in the field of nuclear physics. Under this cloak were to emerge more than 600 different radar systems.