Dr. Thomas H. Mahoney, professor of history, has been appointed chairman of the Massachusetts State Fulbright Committee by the US Department of State. He succeeds Dr. Harold M. Kate, president of Union College. Others members of the Massachusetts Committee are Dr. Abraham S. Sacks, president of Brown College, the Rev. Raymond顺德, S.J., president of Holy Cross College, and Dr. Joseph J. Cirelli, president of Regis College.

Dr. Thomas H. Mahoney, a member of the Cambridge City Council, is a Carnegie Fellow in law and history at Radcliffe Law School during the past academic year. He is the author of a number of books and articles on history and has held both Guggenheim and American Council of Learned Societies Fellowships. He has also delivered a series of Lowell Lectures, sponsored by the Lowell Foundation, and has served as president of the American Catholic Historical Association.

ONCE MORE INTO THE BREACH

Way back in 1953 I started writing this column about campus life. Today, a full 13 years later, I am still writing this column. I could say it is all new and lively as ever. This is called "arrested development." But where else can a writer find a subject as fascinating as the American campus? Where else are minds so notched, ideas so rolled, passion so unrolled? Right now, for example, though the new school year has just begun, you're already encountering the following difficulties:

1. You hate your teachers.
2. You hate your courses.
3. You hate your room-mates.
4. You have no time to study.
5. You have no place to study.
6. You see, friends? When you've got a problem, don't lie another year of Max Shulman's uninhibited, skidding, besotted, unphilosophical, and unscientific nonsense—end of problems.

We all know, of course, that many of our undergraduate students are being evaluated against the cutting scores of 80 rather than 70.

Mrs. Eleanor Lott, MIT's Selective Service Advisor indicated that she knew of no Tech student who scored below 78, and only a very few below 78. The majority of the scores were in the 80's, and five students had managed to achieve 98.

The survey went on to explain the undergraduate failure rates as normal in the face of the high attrition rates for college freshmen. This rate drops significantly after the first year, the attrition rate is even higher for students in engineering curricula.

3.9 grad students pass test

Here on passing score of 80 for graduate students seemed to be a stumbling block, with only about three out of five graduate students passing. The GMC found that it was more likely that a graduate student was in the upper quarter of his college, senior class than passed the SQT.

It was also found that many of their undergraduate students were being evaluated against the cutting score of 80 rather than 70.

Here are 7 knotty problems facing the Air Force: can you help us solve one?

1. Repaird in space. If something goes wrong with a vehicle in orbit, how can we repair it? Answers must be found. If effective space repair systems are to become a reality, for this and other assignments Air Force student engineers will be called on to answer in the next few years, we need the best brains available. Persuade your students, friends, and engineering colleagues to enter space repair research. The minimum score needed at the start of their careers?

2. Life support biology. The fitting of metabolic needs over very extended periods of life in space is one of the most pressing remaining problems that Air Force scientists are working on. These research efforts are of vital importance for our future mission as well as in space.

3. Synergistic plane changing. The obijench of a spacecraft, including its ability to change direction, is one of the most important elements of the military value of a space station. There are plenty of assignments for young Air Force physicists in this area.

4. Space orientation. The critical problems of a spacecraft, including its ability to change direction, is one of the most important elements of the military value of a space station. There are plenty of assignments for young Air Force physicists in this area.

5. Synergistic plane changing. The obijench of a spacecraft, including its ability to change direction, is one of the most important elements of the military value of a space station. There are plenty of assignments for young Air Force physicists in this area.

6. Space propulsion. As our space flight covers greater and greater distances, we need new propulsion—more than any other thing—because fuel is a limiting factor. Fuel back and new propulsion systems that can be used must be found, if we are to keep exploring the reaches of space. And it may well be an Air Force scientist, either in this country or abroad, who makes the big breakthrough. New fuels and new propulsion systems must be found, if we are to keep exploring the reaches of space. And it may well be an Air Force scientist, either in this country or abroad, who makes the big breakthrough.

7. Pilot performance. Important here must be secured in order to determine how the pilots of manned spacecraft will react to the changes in the environment as they become involved in research and development work. Of course, if we are to keep exploring the reaches of space, we need the best research and development work. Of course, if we are to keep exploring the reaches of space, we need the best research and development work. Of course, if we are to keep exploring the reaches of space, we need the best research and development work.