HERMES ROCKET
The efficient Hermes Rocket weighs only eight pounds, and is available with the American Standard Keyboard in either Pica or Elite.
$54.95 case included
Olivetti Lettera 22 — $74.50
Also available Smith-Corona Electrics and Non-electrics

RECORDS
MIX AND MATCH
Classical, Folk, and Jazz record sales. Choose from many labels.
Now $1.98
Any five (5) for $9.00
Folkways record sale
Reg. $3.98 and $3.76
NOW
12 inch: $2.98 ea.
3 for $8.25
10 inch: $2.76 ea.
3 for $7.50

ATTACHE CASE
The convenient and efficient way to carry books and papers.
Made of Top Grain Cowhide in Suntan, Black and Olive
$24.00
(Other Attaché Cases and Brief Bags from $3.00 to $25.00)

THE TRADITIONAL M.I.T. DESK LAMP
Ideal for desk or drafting board. 2 extension arms, 45 inches total reach. Uses 2 18 inch 15 watt fluorescent bulbs. Top quality ballasts assure quiet operation.
Special LOW Coop price: $24.95

PHARMACEUTICAL SPECIALTIES

<table>
<thead>
<tr>
<th>List Price</th>
<th>Coop Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKA-SELTZER</td>
<td>62c</td>
</tr>
<tr>
<td>BUFFERIN (100)</td>
<td>$1.37</td>
</tr>
<tr>
<td>BAYER (100)</td>
<td>89c</td>
</tr>
<tr>
<td>LAVORIS (17 oz.)</td>
<td>96c</td>
</tr>
<tr>
<td>(10 oz. Plastic) BRECK SHAMPOO</td>
<td>$1.25</td>
</tr>
<tr>
<td>HEAD & SHOULDER</td>
<td>$1.59</td>
</tr>
<tr>
<td>VITALIS (Large)</td>
<td>$1.03</td>
</tr>
<tr>
<td>ADORN (Jumbo) (Men's)</td>
<td>$2.25</td>
</tr>
<tr>
<td>AQUA VELA</td>
<td>79c</td>
</tr>
</tbody>
</table>

WATCH For Our Weekly
Low Price Specials! Shop and Save!

MULTIPLE-ACCESS TERMINAL
LET to complement LES-2
Announcement of a new ground terminal for military satellite communications experiments was made June 9 by the MIT Lincoln Laboratory in Lexington. In a series of technical papers presented at the IEEE Annual Communications Convention in Boston, Olds, this Lincoln Experimental Terminal (LET) is the ground-based counterpart of the Lincoln Experimental Satellite (LES-2) launched from Cape Kennedy on May 6. LET and LES-2 are complementary parts of an Air Force-sponsored space communications system.

Program directed towards development of advanced devices and techniques for possible use in meeting special requirements of military satellite communications and the design of interdependent space-borne and ground-based components.

Packaged in a transportable vehicle, LET utilizes, for the first time in a complete communications terminal, noise reduction and signal-processing techniques. LET is unique in its ability to transmit and receive via all types of satellites, including the moon. Other unique feature is its provision for multiple-access capability, which permits simultaneous use of a single satellite by a number of ground stations in different locations.

The entire LET facility, including electronic equipment, power generation and fuel for about 12 hours, is housed in a two-part vehicle that can be towed on the highway or carried in a single large aircraft.

One part of the LET, with detachable wheels, is the antenna pedestal with an integral ramp-ef equipment shelter housing a 3 kilowatt transmitter and two noise receivers. The other part of the LET is a 30-foot semitrailer which contains the central electronics compartment and control room, the electrical generation and fuel, and the air conditioning and storage racks.

The 35-foot antennas use a Cassegrainian arrangement on an azimuth-elevation mount. Designed to operate in winds up to 35 knots, the antenna system can operate in an automatic tracking mode, under computer control. LET can transmit and receive one voice channel and two teletype channels simultaneously.

Another paper presented at the IEEE Convention gives a detailed description of LES-2, the second in the Lincoln Experimental Satellite series. Experiments in LES-2 and the earlier LES-1 included the first all-solid-state X-band transmitter; a novel far-infrared and antenna-switching system, thus eliminating the necessity of an elaborate stabilization system for antenna pointing; a simple magnetic system for automatic control of the spin-axis to add thermal balance and increase power output; and the first directly modulated telemetry transmitter to be operated aboard a spacecraft.

The experimental technical features in LET and LES-2 are aimed at providing components and techniques which will improve the capabilities of future long-distance military communications systems utilizing satellites. Further improvements will be investigated in future experiments.

PHARMACEUTICAL SPECIAL TIES

<table>
<thead>
<tr>
<th>List Price</th>
<th>Coop Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKA-SELTZER</td>
<td>62c</td>
</tr>
<tr>
<td>BUFFERIN (100)</td>
<td>$1.37</td>
</tr>
<tr>
<td>BAYER (100)</td>
<td>89c</td>
</tr>
<tr>
<td>LAVORIS (17 oz.)</td>
<td>96c</td>
</tr>
<tr>
<td>(10 oz. Plastic) BRECK SHAMPOO</td>
<td>$1.25</td>
</tr>
<tr>
<td>HEAD & SHOULDER</td>
<td>$1.59</td>
</tr>
<tr>
<td>VITALIS (Large)</td>
<td>$1.03</td>
</tr>
<tr>
<td>ADORN (Jumbo) (Men's)</td>
<td>$2.25</td>
</tr>
<tr>
<td>AQUA VELA</td>
<td>79c</td>
</tr>
</tbody>
</table>

Watch For Our Weekly
Low Price Specials! Shop and Save!

THE TECH COOP

MULTIPLE-ACCESS TERMINAL
LET to complement LES-2
Announcement of a new ground terminal for military satellite communications experiments was made June 9 by the MIT Lincoln Laboratory in Lexington. In a series of technical papers presented at the IEEE Annual Communications Convention in Boston, Olds, this Lincoln Experimental Terminal (LET) is the ground-based counterpart of the Lincoln Experimental Satellite (LES-2) launched from Cape Kennedy on May 6. LET and LES-2 are complementary parts of an Air Force-sponsored space communications system.

Program directed towards development of advanced devices and techniques for possible use in meeting special requirements of military satellite communications and the design of interdependent space-borne and ground-based components.

Packaged in a transportable vehicle, LET utilizes, for the first time in a complete communications terminal, noise reduction and signal-processing techniques. LET is unique in its ability to transmit and receive via all types of satellites, including the moon. Other unique feature is its provision for multiple-access capability, which permits simultaneous use of a single satellite by a number of ground stations in different locations.

The entire LET facility, including electronic equipment, power generation and fuel for about 12 hours, is housed in a two-part vehicle that can be towed on the highway or carried in a single large aircraft.

One part of the LET, with detachable wheels, is the antenna pedestal with an integral ramp-ef equipment shelter housing a 3 kilowatt transmitter and two noise receivers. The other part of the LET is a 30-foot semitrailer which contains the central electronics compartment and control room, the electrical generation and fuel, and the air conditioning and storage racks.

The 35-foot antennas use a Cassegrainian arrangement on an azimuth-elevation mount. Designed to operate in winds up to 35 knots, the antenna system can operate in an automatic tracking mode, under computer control. LET can transmit and receive one voice channel and two teletype channels simultaneously.

Another paper presented at the IEEE Convention gives a detailed description of LES-2, the second in the Lincoln Experimental Satellite series. Experiments in LES-2 and the earlier LES-1 included the first all-solid-state X-band transmitter; a novel far-infrared and antenna-switching system, thus eliminating the necessity of an elaborate stabilization system for antenna pointing; a simple magnetic system for automatic control of the spin-axis to add thermal balance and increase power output; and the first directly modulated telemetry transmitter to be operated aboard a spacecraft.

The experimental technical features in LET and LES-2 are aimed at providing components and techniques which will improve the capabilities of future long-distance military communications systems utilizing satellites. Further improvements will be investigated in future experiments.

MULTIPLE-ACCESS TERMINAL
LET to complement LES-2
Announcement of a new ground terminal for military satellite communications experiments was made June 9 by the MIT Lincoln Laboratory in Lexington. In a series of technical papers presented at the IEEE Annual Communications Convention in Boston, Olds, this Lincoln Experimental Terminal (LET) is the ground-based counterpart of the Lincoln Experimental Satellite (LES-2) launched from Cape Kennedy on May 6. LET and LES-2 are complementary parts of an Air Force-sponsored space communications system.

Program directed towards development of advanced devices and techniques for possible use in meeting special requirements of military satellite communications and the design of interdependent space-borne and ground-based components.

Packaged in a transportable vehicle, LET utilizes, for the first time in a complete communications terminal, noise reduction and signal-processing techniques. LET is unique in its ability to transmit and receive via all types of satellites, including the moon. Other unique feature is its provision for multiple-access capability, which permits simultaneous use of a single satellite by a number of ground stations in different locations.

The entire LET facility, including electronic equipment, power generation and fuel for about 12 hours, is housed in a two-part vehicle that can be towed on the highway or carried in a single large aircraft.

One part of the LET, with detachable wheels, is the antenna pedestal with an integral ramp-ef equipment shelter housing a 3 kilowatt transmitter and two noise receivers. The other part of the LET is a 30-foot semitrailer which contains the central electronics compartment and control room, the electrical generation and fuel, and the air conditioning and storage racks.

The 35-foot antennas use a Cassegrainian arrangement on an azimuth-elevation mount. Designed to operate in winds up to 35 knots, the antenna system can operate in an automatic tracking mode, under computer control. LET can transmit and receive one voice channel and two teletype channels simultaneously.

Another paper presented at the IEEE Convention gives a detailed description of LES-2, the second in the Lincoln Experimental Satellite series. Experiments in LES-2 and the earlier LES-1 included the first all-solid-state X-band transmitter; a novel far-infrared and antenna-switching system, thus eliminating the necessity of an elaborate stabilization system for antenna pointing; a simple magnetic system for automatic control of the spin-axis to add thermal balance and increase power output; and the first directly modulated telemetry transmitter to be operated aboard a spacecraft.

The experimental technical features in LET and LES-2 are aimed at providing components and techniques which will improve the capabilities of future long-distance military communications systems utilizing satellites. Further improvements will be investigated in future experiments.