The old Dewey Decimal System for the classification of books was in use at MIT. The Dewey system has been in use since 1876 and has been modified several times. The Dewey system was designed by Melvil Dewey. The Dewey system is still used at MIT today, but it is being replaced by the Library of Congress (LC) system.

The Dewey system is based on a decimal system, with each number representing a different field of knowledge. The Dewey system is easy to use because it is organized in a hierarchical manner, with more specific subjects being represented by smaller numbers.

The Dewey system includes several features that make it useful for guiding readers to the information they are seeking. For example, the Dewey system includes a scheme for classification based on subject matter, which makes it easy for readers to find books on a specific topic.

The Dewey system also includes a system for authorship, which allows readers to find works by a specific author. Another feature of the Dewey system is the ability to include new sections and topics as they arise.

The Dewey system is widely used in libraries around the world, and it is still the most commonly used system for classifying books. However, the Dewey system is being replaced by the Library of Congress system at MIT because the LC system is more flexible and can be adapted to the needs of a specific library.

As a result, MIT has been undergoing a transition to the LC system, which is being used for all new acquisitions. The transition to the LC system is expected to be complete in the near future.

The transition to the LC system is expected to cause some temporary inconvenience for MIT students and users. However, the library staff is working to ensure that the transition is as smooth as possible.

In summary, the Dewey system has been in use at MIT for many years, but it is being replaced by the Library of Congress system. The Dewey system is a valuable tool for classifying books, and it will continue to be used in some libraries, but the LC system is expected to be the dominant system in the future.