The Student Aid Office, once railroad, is now totally committed in use of federal funds for student loans under the 1966 National Defense Education Act.

Approximately $200,000 of federal money has been loaned to graduate and undergraduate students since MIT received notification of approval for its first NDEA bond request last June.

A review in the summer of 1963 of the aid Office indicated that Technology Loan Fund resources and other sources of aid would soon prove inadequate. Application for MIT participation in the NDEA program following that time was avoided by reliance on local sources. The administration was also unhappy with the strong emphasis and much discussion of the Neighborhood Aid Program regarding supposedly Community activity of the loan recipient. (This was modified by a Kennedy bill in 1963.)

Up to $900 per year may currently be loaned to MIT undergraduate and graduate students, although the law does not permit the student to be charged more than a 5% interest rate. The student is responsible for the entire loan, including interest, at the end of the school year.

Applications for the loans are approximately the same as that for an MIT loan, although a bent toward teaching is helpful. The new funds have allowed the aid office to take the old 150% limit on graduate and undergraduate loans and has reduced some grade average restrictions on undergraduate loans.

Architecture class designs dorms for West Campus as an exercise

Junior Course IV members of Professor Marvin E. Goody's class "Design and Construction of Dwelling Units" (1.131) have been at work recently on a project to provide MIT dormitory men with residential men's quarters. The student designed dormitory, called the "West Campus Servicenter" (WCS), was presented as a result of the course for the use of dormitory men, who thus far have been forced to rely on existing MIT residence halls.

The 255,000 gauss magnet obtained 355,000 gauss from a solid in a working space of 749 inches in diameter. It achieves the peak 255,000 gauss field by adding two iron poles, reducing the working area to a disc 1 inch in diameter and 1/94 inch thick.

The 56,000 ampere field of current used in the magnet create power densities of 300,000 watts per cubic inch and pressures exceeding 60,000 pounds per square inch. This magnet is cooled by 20,000 gallons of water per minute.

Mr. Montgomery expects to be able to push the peak continuous field to 300,000 gauss in the near future.