Emphasized two general aspects of interplanetary space physics. The first was that such phenomena as hydrodynamic shocks in the absence of collisions are much more readily observable under the conditions present in interplanetary space.

The second was that the interplanetary plasma is the only plasma of cosmic dimensions with densities and magnetic fields similar to those in interstellar space. For this reason, said Biermann, such studies are basic. Cosmic plasma physics, he concluded, "appears to be a link which connects astrophysics, laboratory physics, and the Earth Sciences."

Biermann's lecture was one of three at the conference. The second was a presentation by Dr. Walter H. Munk, a professor at the Institute of Geophysics and Planetary Physics at the University of California. Dr. Munk spoke on "The Spectrum of Waves."

The third and last talk was presented by Dr. W. H. Badger, the Director of the Institute of Geophysics and Planetary Physics. His topic was "The Earth's Magnetic Field." The final boundary between the magnetosphere, said Biermann, has long been studied as a stationary environment, but this is not the case. The interplanetary plasma virtually flows with a speed much greater than that of the earth. The final talk was presented by Dr. W. H. Badger, the Director of the Institute of Geophysics and Planetary Physics. His topic was "The Earth's Magnetic Field." The final boundary between the magnetosphere, said Biermann, has long been studied as a stationary environment, but this is not the case. The interplanetary plasma virtually flows with a speed much greater than that of the earth.

For this reason, said Biermann, such studies are basic. Cosmic plasma physics, he concluded, "appears to be a link which connects astrophysics, laboratory physics, and the Earth Sciences."

Thursday session

(Continued from Page 2)

Institute. He discussed "Large-Scale Circulation of the Oceans."

Final speaker of the morning was Dr. Walter H. Munk, Professor of Geophysics at the University of California at San Diego. His topic was "The Earth's Magnetic Field."

The final boundary between the magnetosphere, said Biermann, has long been studied as a stationary environment, but this is not the case. The interplanetary plasma virtually flows with a speed much greater than that of the earth.

For this reason, said Biermann, such studies are basic. Cosmic plasma physics, he concluded, "appears to be a link which connects astrophysics, laboratory physics, and the Earth Sciences."

Biermann's lecture was one of three at the conference. The second was a presentation by Dr. Walter H. Munk, a professor at the Institute of Geophysics and Planetary Physics at the University of California. Dr. Munk spoke on "The Spectrum of Waves."

The third and last talk was presented by Dr. W. H. Badger, the Director of the Institute of Geophysics and Planetary Physics. His topic was "The Earth's Magnetic Field." The final boundary between the magnetosphere, said Biermann, has long been studied as a stationary environment, but this is not the case. The interplanetary plasma virtually flows with a speed much greater than that of the earth.

For this reason, said Biermann, such studies are basic. Cosmic plasma physics, he concluded, "appears to be a link which connects astrophysics, laboratory physics, and the Earth Sciences."

Biermann's lecture was one of three at the conference. The second was a presentation by Dr. Walter H. Munk, a professor at the Institute of Geophysics and Planetary Physics at the University of California. Dr. Munk spoke on "The Spectrum of Waves."

The third and last talk was presented by Dr. W. H. Badger, the Director of the Institute of Geophysics and Planetary Physics. His topic was "The Earth's Magnetic Field."