Prof. Wiesner to talk on disarmament

Prof. Jerome B. Wiesner, former Special Assistant for Science and Technology to President Kennedy, will talk on halting the arms race on the fourth "Great Engineering texts due for release

Various new publications will soon be forthcoming from the School of Engineering, according to the school's recently-released annual report.

In the gas and fluid dynamics area, Professors Ashley and Landahl are preparing a textbook on the aerodynamics of wings and bodies, based on their own experiences in teaching the graduate-level course of the same name. Professors Mar and Plan have completed a text for the first course in solid mechanics, and are currently writing a book for use in the second course.

Also, Professors Hill and Peterson have nearly finished their text, Mechanics and Thermodynamics of Propulsion, and Professors Kerrebrock, Hoffman, and Oulette have prepared class materials on related topics.

In the Department of Chemical Engineering, the various design problems used in the undergraduate courses are being assembled in book form by Professor Beach and will be published by the MIT Press this summer. In addition, Professors Hotol and Sarafin are assembling the Department's research on radioactive transport for publication.

In the Department of Mechanical Engineering, Professors Keehn and Nakagouda are completing a textbook on thermodynamics intended for both graduates and undergraduates.

Decisions 1964" program tomorrow at 8 pm on WGBH-TV. Prof. Wiesner, Dean of the School of Science at MIT, feels that some form of controlled disarmament is necessary. He claims that world tensions have eased and he is convinced that the Soviet Union sincerely wants some form of disarmament and that Americans take a more realistic approach to the problem today than they did a few years ago.

After the thirty-minute discussion with Wiesner, Selvin post, will moderate while a panel of experts answer questions telephoned from the audience.

Student Center library tentatively proposed

An undergraduate library on a tentatively fifth floor of the Student Center was proposed at a Student Center Committee meeting on January 31, according to Arthur Wiesner, Saville Davis, and Robert Kennedy, will talk on halting the arms race on the fourth "Great

The purpose of the new reading library, according to Bublitz, would be to "provide a convenient, quiet place for all students to use their own or reserve books for class preparation."

In the event that money is not available to add a fifth floor to the Student Center, there is a possibility that financial support could be found to fill the need for a centrally located reserve book room.

This cyclotron was built and operating by the fall of 1939 and reported at the Washington April Meeting (Phys. Rev. 37, 1707, 1931). The diameter of the chamber was about 5 inches. Placed between the 1-inch diameter poles of a magnet with a field of 12,700 gauss and 2,000 volts on its single dee, it produced 80,000 volt hydrogen molecule ions trapped and measured in a Penaday gauge to which a measured and adequate decelerating voltage could be applied.

The do-it-yourself-electro-wax days are gone from cyclotron technology forever. The tiny instrument invented by Dr. Ernest O. Lawrence at Berkeley in 1930 has been superseded many times by increasingly larger and more powerful instruments of nuclear research.

Today the business of discovery is carried on by 3500 people at the Berkeley site of Lawrence Radiation Laboratory, overlooking the University of California campus and San Francisco Bay. And the challenge of innovation remains for engineers—in advanced accelerator design and in a dynamic unclassified research program.

EE's: Major electronics development programs at LRL deal with nuclear instrumentation, automated data handling and acquisition, radio frequency and high voltage power supply systems, fast-counting techniques and semiconductor device development.

ME's: Our Mechanical Engineering work concentrates on design of accelerators and the instrumentation associated with them, on magnet development, high vacuum systems, shielding problems and mechanical engineering applied to biomedical research.

Engineering graduates at all levels who want to learn more about LRL should contact the Placement Office for appointments. Campus interviews will be held on Friday, March 6.