8.01 theorem tested

New foreign opportunities available

The Foreign Opportunities Committee intends to create a placement program for MIT students to work in England and other European countries. The program will be sponsored through the International Association for the Exchange of Students for Technical Experience and, independently, through MIT.

The J. A. S. T. E., a group formed in 1958, lists more than thirty countries as participating members. It exchanges students for summer work experience and trainships and is now attempting to create study opportunities in Europe similar to junior year abroad programs at other colleges.

Interested students should immediately contact Bill Roeseler.

$47,100 in grants from Eastman Kodak

Eastman Kodak has granted $47,100 to MIT under their aid-to-education program for 1963. The contributions include an unrestricted direct grant of $9,000 and three Kodak research grants previously announced and now in use.

Earlier this year the company awarded $12,500 grants for research to each of three MIT graduate departments - the Department of Chemistry, the Department of Physics, and the Department of Chemical Engineering. MIT is one of 53 privately supported colleges and universities to receive direct grants from Kodak this year. The amount of these direct grants is based on the number of graduates from these institutions who joined Kodak five years ago and are presently employed by the company.

They helped make a major advance in medical technology

These six men were members of a team that developed an x-ray system so advanced that, even with exposure to x-radiation reduced by 80%, images come out much sharper than those on the diagnostician’s viewing screen. By bringing to the task the unique talents, experience, and educational background of each member, this team of experts has made it possible for radiologists and physicians to do a better job of medical diagnosis.

Of these six men from General Electric’s X-Ray Department, Milwaukee, four have degrees in engineering, one majored in physics and math, and the sixth in economics. Not one was trained primarily in medical science—although, of course, their Department works closely with the medical profession. Nor did any of them anticipate, when in college, that their major subjects would be put to use in providing improved tools for diagnostic medicine. But they did realize—as their record shows—that better-than-average performance could qualify them for challenging jobs with a forward-looking company like General Electric.

There are hundreds of such teams at General Electric today. Their make-up varies, and almost every field of specialization, technical and non-technical, is represented somewhere in the Company. The projects are just as varied: nose cones for missiles, desalination of sea water, computers, power plants to squeeze more electricity from a pound of coal or a gram of atomic fuel.

The more than 36,000 college graduates at General Electric comprise one of the largest and most varied pools of talent in the nation. But the Company’s future is, in many ways, wrapped up in people still in school and college. As projects increase in size and complexity, so will the need for able young people. People who demonstrate, through their college record, the best use of their educational opportunities, who know the meaning of excellence, who understand the differences between specialization and narrowness, breadth and shallowness. Such people, working together, will make up the teams of the future, and be the architects of what we call progress.