Earth Sciences, Cenco Bldgs. On Schedule

Construction work at the Institute proceeded rapidly during the summer months, even through the MIT Employee Union strike, and a work stoppage of nearly a month on the Earth Sciences Building.

Work on the old Cenco Building is near completion, with the Department of Psychology scheduled to move in during the month of October. Workmen are currently finishing the walls, painting, installing fixtures, and preparing to bring in desks, furniture, and other equipment.

A notable feature of the remodeling job is the small number of windows which were installed. The building will be air-conditioned, however, and will have sufficient lighting that, in the words of the planners, "there is just a need for windows." Some windows, which are naturally installed, and the present use of the windows of a middle, were adopted to permit flexibility of arrangement, with the windows of the center, and workrooms are presently constructing the main floor. The first and second floors will be finished before Academic Faculty have a majority habit, administrative faculty, and lecture halls will be mainly lecture halls, and then there are laboratories which will be the other floor. After these two floors, the upper building will be a matter of necessity and will proceed faster, with the next emission scheduled for fall of 1964.

There will be no iron framework rising over the site, however, according to E. P. J. Luecke, assistant to the chairman. The buildings of concrete and glass, without any iron frame, the walls of each floor must be completed before the next floor can be begun.

Building 1000 was made possible through a grant from the Danish government. This five-story building, which is of concrete, is not only a part of the building itself, but is a rare feature.

Incidentally, the large concrete structure located on the northwest portion of the building site is not a part of the building itself. It is a large structure, erected to test the concrete and to protect the buildings on these premises, hopefully it will be moved to the building on those premises.

The biggest plan currently being worked on is the $3,000,000 Science-Teaching Center building. This five-story building will run east and west through the Science-Teaching Center, and during its completion the building will house the Science-Teaching Center.

Rigid Techniques Used

The framework for the Tech-

center building will be com-
pleted in August, and since then workmen have been busy putting

Photo by Conrad Grundheber

Construction

The Married Student's Dorm, now in its final stage of construction, will be the first major building on campus to be completed since the beginning of the Second Century Fund.

Several other projects are still under construction, and will lie the completion of the building in the near future. The Institute recently acquired the plastered property east of Ames Street. Many of the Physical Science Faculty and workshops are now working on the building, and the plans are expected to be moved to the building on those premises.

The largest plan currently being worked on is the $3,000,000 Science-Teaching Center building. This five-story building will run east and west through the Science-Teaching Center, and during its completion the building will house the Science-Teaching Center.

Rigid Techniques Used

The framework for the Tech-

center building will be com-
pleted in August, and since then workmen have been busy putting

Faculty Retirement

Six members of the MIT faculty retired at the end of June. They were:

Professor John Clapp, head of the Department of Metallurgy since 1919, whose chief work has been in the application of thermodynamics to metallurgical problems. During World War II, while working on the Manhattan District Project, he developed a method for converting uranium powder into solid castings for atomic machinery and telephone communications. He has been executive officer in the Department since 1951, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor John M. Crandall, asso-
ciate professor of chemistry, is a pioneer in the field of organic peroxides. Although he has helped ceramics evolve, especially in the development of new ceramic materials, he is particularly interested in understanding the behavior of the elements.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.

Professor Charles E. Taylor, executive officer in the Department of Electrical Engineering, is a recognized authority on electronic machinery and communications. He has been in charge of the design and construction of MIT's telephone system, one of the largest private telephone systems in the country. As a professor in the Department of electrical engineering, he has been a member of the physics department since 1919, he has been especially helpful to students with academic problems.