Research Staff of Thirty

Dozens Of Uses Found For Reactor

More than a hundred nuclear reactors have been built in various parts of the world since the first sustained atomic chain reaction was achieved at the University of Chicago in 1942. They are of a number of different types and sizes and were built for various purposes. Some are research reactors, such as the MIT Reactor. Some are very large ones for the production of fusionable materials, such as those at Hanford, Wash. Some were designed for the production of electric power.

The MIT Reactor is small compared to reactors for the production of power or of fusionable materials, but it is in the front rank of the world's scientific research reactors. It is similar in type to the CP-5 at Argonne National Laboratory near Chicago and to HIBRED and PUFFITO, operated by the United Kingdom Atomic Energy Authority at Harwell, England, in that all of these employ solid fuels and are moderated and cooled by heavy water.

NSF Grants
Research capabilities of the nuclear reactor have been augmented under a National Science Foundation grant of nearly a quarter of a million dollars.

The grant of $255,346 has permitted MIT to expand basic research in such areas as refinements in the theory of nuclear reactors and the extension of man's knowledge about the atom's invariable but extraordinary structure. The N.S.F., a Federal agency established by Congress, provides financial support for worthy scientific purposes.

The MIT Research Reactor (MTR) is a facility of the Laboratory for Nuclear Engineering. It is the heart of a $2,500,000 research installation located on the campus. Cambridge, a few minutes away from the MIT campus. The reactor originally "went critical" (achieved sustained atomic chain reaction) on July 21, 1956. In July,

The ground floor has a large equipment room, where all uniforms and equipment for 19 varsity sports at MIT are maintained, a huge water tower, extra showers, a trainer's room, a visiting team's room, and a locker room and showers for women. The men's locker room measures 45 by 10 feet and contains nearly 2,000 individual lockers for students.

The second floor is occupied by a multi-purpose gymnasium. Two large wooden doors are located at intervals to divide the space into a wrestling room, a fencing room and an individual exercise room by adding another cooling tower or by utilizing a water line which is to be installed in the MTR Magnet Laboratory on the first floor of the MIT building.

MIT has other facilities for sports and recreation that include swimming pools, baseball fields, playgrounds, tennis courts, and a skating rink. Many of these facilities have been augmented under a National Science Foundation grant of nearly a quarter of a million dollars.

More than a hundred nuclear reactors have been built in various parts of the world since the first sustained atomic chain reaction was achieved at the University of Chicago in 1942. They are of a number of different types and sizes and were built for various purposes. Some are research reactors, such as the MIT Reactor. Some are very large ones for the production of fusionable materials, such as those at Hanford, Wash. Some were designed for the production of electric power.

The MIT Reactor is small compared to reactors for the production of power or of fusionable materials, but it is in the front rank of the world's scientific research reactors. It is similar in type to the CP-5 at Argonne National Laboratory near Chicago and to HIBRED and PUFFITO, operated by the United Kingdom Atomic Energy Authority at Harwell, England, in that all of these employ solid fuels and are moderated and cooled by heavy water.

NSF Grants
Research capabilities of the nuclear reactor have been augmented under a National Science Foundation grant of nearly a quarter of a million dollars.

The grant of $255,346 has permitted MIT to expand basic research in such areas as refinements in the theory of nuclear reactors and the extension of man's knowledge about the atom's invariable but extraordinary structure. The N.S.F., a Federal agency established by Congress, provides financial support for worthy scientific purposes.

The MIT Research Reactor (MTR) is a facility of the Laboratory for Nuclear Engineering. It is the heart of a $2,500,000 research installation located on the campus. Cambridge, near 1,000 feet away from the MIT campus. The reactor originally "went critical" (achieved sustained atomic chain reaction) on July 21, 1956. In July,