By Ex-FBI Man

Lecture On Cuba Tuesday

Alexander J. Rorke, Jr., the first American newspaperman to be shot and captured alive during the Bay of Pigs invasion, said Tuesday that Cuba is looking for years of crude, controlled pressure to break the United States. He said that the Castro government would use the avenues of underhandedness and propaganda it has already used to try to influence the American public.

Lecture Series Committee will sponsor the ex-FBI man. He will be repeated immediately next Tuesday at 5:15 in Room 26-100. The other lectures will be in English, German, and Russian.

Stratton Suggests Hearings

To Get Student Feelings

(Continued from page 1)

The increasing amount of research being done across old disciplinary lines demands a similar change in the educational pattern, with more stress on interdisciplinary work and cross-fertilization of fields. Agreeing that more freedom for students is desirable, he said that most students don't take much advantage of the freedom they now have. "Students must take the initiative and make themselves more independent. They must not accept blindly what professors say, but at the same time, they should not shirk the responsibility of seeking the truth themselves."

He suggested that "Harvest," the student-run publication, might be given greater contact with the students' outside world on the part of under-graduates.

During the discussion period mentioned by Stratton, and currently under sentence of death in Cuba, was questioned by Professor Freedom that understanding and cooperation may be a key to the initiative in broadening their programs, but the faculty coordinator was not so confident. The students are expected to make a greater effort in this area.

In response to a question concerning a proposed plan of gathering information, Stratton remembered that "Harvest" be held by the investigating committee.

Bone Sterilization

High Voltage Lab In Medical Work

An MIT laboratory concerned with high voltages and radiation physics is now a major center for the sterilization of bone used in bone graft operations, according to Professor John G. Trump of the High Voltage Research Laboratory, bone sterilization is a logical outgrowth of research with high voltage accelerators.

Electron radiation, unlike heat or chemical sterilization, kills germs present in or on the bone material without significant damage to the bone graft material. It is a unique method of bone protection from infection due to bone contamination.

The generator used is two stories high and stands its electronic house in a shielded basement. From 3 to 15 bone envelopes are processed simultaneously. Each bone piece is exposed to the electron beam for about 20 seconds, receiving a radiation dosage of about 2 million roentgens. The accelerator can observe the entire process through a closed circuit television.

Medical centers not sterilized bone materials within 24 to 48 hours after receiving it. The pieces - sealed and frozen - will keep for many months. Irradiated bone graft material has made possible surgical procedures in children who otherwise could not be treated successfully.

The sterilization techniques and clinical feasibility of irradiated bone were worked out in a collaborative study with medical teams including Dr. Jonathan Cohen, of the Children's Hospital Medical Center in Boston and Dr. Andrew L. Bassett, now of the New York Orthopedic Hospital. The electron-irradiated bone has found increasing acceptance, and the MIT laboratory properly irradiated bone sterilization for other medical groups throughout the country.

The generator can operate at up to four million volts. It is a Van de Graaff-type electron accelerator, built in the early 1950's. It was used in 1958.

Bone research, in collaboration with medical groups in Washington, D.C., and Boston, started in the early 1950's and proved successful in an early series of 100 operations using electron-stere-

Bone Sterilization

High Voltage Lab In Medical Work

An MIT laboratory concerned with high voltages and radiation physics is now a major center for the sterilization of bone used in bone graft operations, according to Professor John G. Trump of the High Voltage Research Laboratory, bone sterilization is a logical outgrowth of research with high voltage accelerators.

Electron radiation, unlike heat or chemical sterilization, kills germs present in or on the bone material without significant damage to the bone graft material. It is a unique method of bone protection from infection due to bone contamination.

The generator used is two stories high and stands its electronic house in a shielded basement. From 3 to 15 bone envelopes are processed simultaneously. Each bone piece is exposed to the electron beam for about 20 seconds, receiving a radiation dosage of about 2 million roentgens. The accelerator can observe the entire process through a closed circuit television.

Medical centers not sterilized bone materials within 24 to 48 hours after receiving it. The pieces - sealed and frozen - will keep for many months. Irradiated bone graft material has made possible surgical procedures in children who otherwise could not be treated successfully.

The sterilization techniques and clinical feasibility of irradiated bone were worked out in a collaborative study with medical teams including Dr. Jonathan Cohen, of the Children's Hospital Medical Center in Boston and Dr. Andrew L. Bassett, now of the New York Orthopedic Hospital. The electron-irradiated bone has found increasing acceptance, and the MIT laboratory properly irradiated bone sterilization for other medical groups throughout the country.

The generator can operate at up to four million volts. It is a Van de Graaff-type electron accelerator, built in the early 1950's. It was used in 1958.

Bone research, in collaboration with medical groups in Washington, D.C., and Boston, started in the early 1950's and proved successful in an early series of 100 operations using electron-stere-

Bone Sterilization

High Voltage Lab In Medical Work

An MIT laboratory concerned with high voltages and radiation physics is now a major center for the sterilization of bone used in bone graft operations, according to Professor John G. Trump of the High Voltage Research Laboratory, bone sterilization is a logical outgrowth of research with high voltage accelerators.

Electron radiation, unlike heat or chemical sterilization, kills germs present in or on the bone material without significant damage to the bone graft material. It is a unique method of bone protection from infection due to bone contamination.

The generator used is two stories high and stands its electronic house in a shielded basement. From 3 to 15 bone envelopes are processed simultaneously. Each bone piece is exposed to the electron beam for about 20 seconds, receiving a radiation dosage of about 2 million roentgens. The accelerator can observe the entire process through a closed circuit television.

Medical centers not sterilized bone materials within 24 to 48 hours after receiving it. The pieces - sealed and frozen - will keep for many months. Irradiated bone graft material has made possible surgical procedures in children who otherwise could not be treated successfully.

The sterilization techniques and clinical feasibility of irradiated bone were worked out in a collaborative study with medical teams including Dr. Jonathan Cohen, of the Children's Hospital Medical Center in Boston and Dr. Andrew L. Bassett, now of the New York Orthopedic Hospital. The electron-irradiated bone has found increasing acceptance, and the MIT laboratory properly irradiated bone sterilization for other medical groups throughout the country.

The generator can operate at up to four million volts. It is a Van de Graaff-type electron accelerator, built in the early 1950's. It was used in 1958.

Bone research, in collaboration with medical groups in Washington, D.C., and Boston, started in the early 1950's and proved successful in an early series of 100 operations using electron-stere-