Student Union 1

After many years of wrangling and discussion, it is depressing to find that the Institute Committee last week felt itself unable to come to a decision with which to meet the demands of the long-proposed Student Union. The most recent student government report on the subject was made to the student body by Professors Boyd Estus '63 and Conrad Grundlehner '64. Inso much were still debating the merits of the entire project. The current state of affairs speaks ill of MIT and is an indication of the communication efforts of the MIT administration.

Much of the discussion last Thursday night centered around the fundamental idea of what a union should be, and what it should do. Clearly, we are not closer to a solution than five years ago, but we think that these years need to discuss fundamental principles, then it should do so and instruct its committee of engagement, as such study is necessary, in order to make it worthwhile attending insocond meetings, and does not consider it to come within its province to the student body or to the student body. If Insoo is unhappy with this situation, it should change it. It is not enough to be guilty of not making clear its own objectives regarding the Union, and of failing to inform the student body of pros and cons of the Union is a part of the Second Century Fund, but as yet, no funds have been made specifically available for construction of the project in the process of drafting up plans for the house, but has had little contact with students on the question of what the Union should be.

The Student Union is a project, which if it ever comes to full fruition, could have a profound impact on the Institute. The Union is a part of the Second Century Fund, but as yet, no funds have been made specifically available for construction of the project in the process of drafting up plans for the house, but has had little contact with students on the question of what the Union should be.

The Student Union is a project, which if it ever comes to full fruition, could have a profound impact on the Institute. The Union is a part of the Second Century Fund, but as yet, no funds have been made specifically available for construction of the project in the process of drafting up plans for the house, but has had little contact with students on the question of what the Union should be.

Technical Education At MIT
By Professors J. H. Horlock and W. S. Owen, of Liverpool

Rights On Moral Decisions

The following article was printed early this fall in the Manchester, England newspaper The Guardian, of which it is an extract, to show our readers to see how other topics look upon MIT and we are reprinting the article with the permission of the Guardian.

In the numerous discussions in Parliament, the press, and elsewhere about the expansion of technical education, MIT has been mentioned as a model to be emulated, occasionally as a focus of adverse criticism. There can be no disputing the magnitude of the contribution which MIT has made to the impressive technical achievement of the United States in the postwar years. This was recognised by the world-wide attention given to their recent centenary celebrations culminating in the speech by the Prime Minister. We consider that the essence of MIT and the basic reasons for its pre-eminent position are not understood when it is compared with other institutions in the United States and even with some universities in this country. MIT is a single institution devoted to teaching and research in technical sciences, designing and building buildings and physical facilities particularly impressive. In our opinion the unique position enjoyed by MIT is due to the fact that it is a complete institution. It is not the sum total of all the educational institutions which have an interest in technical education, but it is the one which has the largest interest or benefit to the community. Brevity in whole or in part, if deemed by the editor to be of a separate commercial building, instead of the large, general university, is the proper way to describe MIT.

What this means is that the Institute is a single institution which has a single policy, which is decided upon by the student body and by the administration. The student body is initiated by an individual member of the staff who then has to seek whatever financial support he can find inside or outside the uni-

While this happens also to a limited extent at MIT, most of the students are engaged in providing the basic engineering science needed to solve urgent and important technical problems and is carried out by the faculty in the light of government or industrial agencies concerned with novel and advanced engineering problems. At MIT the research is carried out directly in one of the most advanced and exciting engineering developments.

This contrasts with the real problems which have to be solved before the next advance can be made in the teaching, at both the undergraduate and postgraduate levels. The Institute in the last 30 years, not only the content but also the arrangements and inter-relation of the courses have undergone several radical revisions as a result of constant critical examination of their relevance to modern needs. The most recent one of these reforms is now being put into operation.

In his four-year undergraduate course, the MIT engineer is taught to use mathematics first two years in physics, and chemistry, which is equivalent to that achieved by a British student in his third year. In his third and fourth years he does not count any professional work, but carries on with the undergraduate work in the Institute. In the last 30 years, not only the content but also the arrangements and inter-relation of the courses have undergone several radical revisions as a result of constant critical examination of their relevance to modern needs. The most recent one of these reforms is now being put into operation.

In recent years more of the students entering the Institute to read the common science and engineering courses of the first two years have subsequently entered the science schools, physics, and chemistry.

This trend towards science in place of engineering parallels a similar development in the United States, and is the result of the fact that the scientist and the engineer in one. As a member of the MIT faculty put it, "If the rocket goes up it is a triumph for science, but if the rocket fails, it is the engineer-er's fault." There is some evidence that student registrations in British universities are following a pattern similar to that of MIT.

The effect of the drop in engineering registrations on engineering education at MIT has been considerable. The faculty has emphasised that the engineer must make his work, he must be a practical man. How-ever, the numbers of students who have any basic scientific education and it is this course that is being followed.

For example, one course is placed on practical engine types, more on statistical mechanics, and less on technical metallurgy than on the physical sciences; the machines and more on electromagnetic theory. Other technical institutes in America have been thinking along parallel lines. There is no doubt that the new MIT philosophy will spread elsewhere in the United States.

It is associated with a very impressive project, initiated by MIT, that is the establishment of basic science in the American high schools.

In this country there has scarcely been a rip on the idea of technical education. Many engineers claim that they do not teach engineering science, although a glance at the new MIT philosophy will show this is an opinion. Others consider if there is any question of engineering, the engineer-er's fault. There is no doubt that MIT is thinking wrong with the present system, which is aimed principally at the man who will become a design and development engineer, it is not sufficient emphasis is placed on industrial engi-neering, production engineering, and work study.

If this country is to share in the rapidly de-

(To appear in page 3)