Varsity Hockeymen Lose To Bowdoin

Playing on the first day of Reading Period, the MIT hockey team suffered its sixth loss of the season, bowing to Bowdoin 4-2. The game, played after two postponements due to bad weather, was marked by hard, aggressive play on both sides. The Martians got off to a flying start with Bert Goodison's second goal, after only 22 seconds had elapsed. Goodison slots a pass in front of the net, had one shot kicked out to the left and then not down, Bowdoin defenseman George Crane hit from right in front on a then not cleared shot. Bowdoin's 6-4 defensemen throw the puck around to good advantage.

The second period was slow and sloppy with Bowdoin getting the only goal midway in the period on a trail shot after goalie Sandy Atkin '56 had stopped a breakaway. The Bears started off the third period just as they had the first and cut the lead to 2-2 on a goal by Paul Stein '68. Taking a pass from Gus Schwartz '55, Stein shot from fifteen feet outside the prime goalie and rolled in the upper part of the nets. Bowdoin bounced right back and scored at 10:56 as they had before, with Atkin slipping one hard shot and then not having a chance on the following for their weight around to good advantage.

Play from here on in was hard with Bowdoin's 6-4 defensemen throwing their weight around to good advantage.

Summer Session

"Molecular Engineering"—a new approach to engineering problems in which new materials are derived from the basic building blocks of atoms and molecules to fit the specifications for special purposes.

"The Artist, Materials and Technology"—new materials available to architects, model makers, and planners—plastics, metals, enamels, glass, laminates, etc.—are without precedent and have potential values in strength, light, color, and surfaces which are not yet realized.

Other topics in the series includes structural design, industrial wastes, vibration, bitonation, heat transfer, creative engineering and product design, control systems engineering, fluid power control, textiles technology, lines and steel welding, X-ray diffraction, ceramics, city and regional planning, instrumental chemical analysis, communications, digital coding and recording, switching circuits, research methods in biology and medicine, science teaching in secondary schools, ship propulsion, electronic computers in business, operations research, dynamics, measurements, plastics in building, hydrodynamics, and food technology.

Extensive work in various laboratories at the Institute will be a feature of most of the programs. Participants will use such advanced equipment as the Whirlwind computer, cyclotrons, synchrotrons, ship model towing tank, underwater propeller tunnel, super sonic wind tunnel, plastics research laboratory, and radar meteorology laboratory.

"This series," according to Professor Houton, "is especially designed for professional people not regularly associated with MIT. We seek to help these people refresh and enlarge their knowledge and extend their mastery in professional fields in which the Institute is pre-eminent."

Members of these programs may live in MIT dormitories, and will have available all of the cultural and recreational facilities of the MIT campus. Additional special events open to members of all programs are planned throughout the summer season from Monday, June 18 through Friday, August 31.

Further information about summer activities at the Institute is available from the Summer Session Office, Room 1-159, Massachusetts Institute of Technology, Cambridge 39.