The research which led Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.

Simplifies Production
All these are replaced by Dr. Waugh's simple chemical test for active insulin. His process vastly simplifies present testing procedures. The same process is also the key to an entirely new method for producing insulin. In its fibril form insulin is apparently not useful for treating human disease; but a chemical treatment by Dr. Waugh to these advances began with a fundamental study of the structure of protein molecules. As a protein of great pharmaceutical importance, insulin was an early subject in Dr. Waugh's studies.

The production of insulin today requires a number of purification steps applied to an initial extract. At each of these steps accurate information about the amount of active insulin present is destroyed. Until now, this information could be had only by time-consuming, tedious, and complex tests on animals—procedures requiring elaborate laboratory facilities.