IT'S LATER THAN YOU THINK

If the Sophomores intend to prevent the freshmen from becoming the twelfth-first year class to emerge victorious from the Field Day battle, without resorting to the use of hand grenades and trench mortars, they had better begin showing some signs of life. If spirit means anything, and we certainly think it does, the freshmen will be heavy favorites to run away with the 45th Annual Field Day on August 25.

When tentative Field Day plans were first announced at the end of last term, there was considerable feeling among the members of the Class of 2-47 that they would be hopelessly outnumbered and that trying to beat the freshmen would be both futile and painful. The Field Day Committee, however, has decided to let the Class of 10-46 fight with the Sophomores; this decision, although it leaves the freshmen with some advantage in numbers, promises to make Field Day close and exciting, for what the Sophomores lack in numbers they make up for in experience.

Rallies have been planned for next Thursday for the freshmen and for next Friday for the Sophomores. Present indications are that the freshmen will have large numbers of enthusiastic candidates out for all their teams while the Sophomore "rally" will be something of a misnomer.

The Field Day Committee has done its share in deciding on an equitable distribution of the classes; it's up to the Sophomores, together with the Juniors in the Class of 10-46, to show some spirit and make the Field Day of 1945 a good struggle and one of the highlights of what otherwise promises to be a rather dull and hot summer.

War Research

(Continued from Page 1)

lanes were under continuous attack, the Army Air Forces initiated patrol and attack by aircraft fitted with radar. The planes used in this first program were equipped with radar designed, built and installed by the M.I.T. Radiation Laboratory. This, as much as any other one thing, marked the turning point in the anti-submarine campaign. Soon this type of air patrol, coordinated with ships, became standard practice by the Navy.

"The Eighth Air Force planned continuous strategic bombing of German war industrial targets beginning in the late Fall of 1943. But during winter and spring, the weather over Germany is such that only about four days per month could be expected to have skies clear enough for visual bombing. The Commanding General sent a number of experienced bomber crews to Boston. Here radar equipment designed and constructed in the Radiation Laboratory was being installed in the group of heavy bombers destined to be the Eighth Air Force's "pathfinder squadron." The laboratory personnel then worked with these crews in their initial training in use of the equipment.

"The pathfinder squadron then flew to England and led and directed the strategic bombing operations over Germany during the period from November, 1943, to the middle of February, 1944, at which time commercially built equipment began to be introduced. However, the Radiation Laboratory equipment continued the operations to the middle of March, 1944, at which time this laboratory-built equipment was fully superseded by much more adequate quantities of the commercially built equipment based on the same designs. Thus the Radiation Laboratory played a very important role in making technically possible the crippling blows struck by General Doolittle's great Air Force.

"The above essential facts about radar in the anti-submarine campaign and in the allied bombing operations over Europe are matters of public record, but M.I.T.'s part in these episodes has not previously been disclosed.

"Also hitherto undisclosed is the fact that M.I.T. operated a field service laboratory in England during the last two years of the war. This BSRL (British Branch of the Radiation Laboratory) had direct channels of supply, communication and exchange of personnel, under military auspices of course, with (Continued on Page 3)

Professor Keith, Course XIII Head Retires In January

Becomes Prof. Emeritus After Having Served 35 Years On Faculty

The pending retirement of Henry H. Keith, head of the department of Naval Architecture and Marine Engineering at the Institute since 1917, was announced last night. Professor Keith, member of the Class of 1909, retires on January 1 with the respect of professor emeritus.

In addition to his work as professor of Naval Architecture, he served for the past 20 years as consultant at the Fore River plant of the Bethlehem Steel Company, the building division in Quincy where he has planned many difficult tanknichings, including the famous airplane carrier Lexington in 1928 and the battleship U.S.S. Massachusetts in 1936. He is widely known also as an authority on the design and construction of naval vessels and on the powering of ships.

Keith Trained U. S. Navy 9 Years

The department of Naval Architecture and Marine Engineering Technology is the largest of its kind in the United States. Professor Keith has played a major role in the training of many naval architects and marine engineers.

The department which he has headed has trained United States Navy construction and engineering officers who have played a significant part in building the American Navy of today. In addition, the department has trained many students for the merchant marine.

Boit, Dalton, and Chas.

INSURANCE

OF ALL KINDS