Open House is Managed by Student Committee

Much of the credit for the work done in developing and making possible the 1940 Open House exhibition is due to the efficient management by the Open House committee.

David T. Mergethaler, '40, in general chairman, assisted by Phoebe A. Walker, '40, who has the publicity, and George R. Weinbrenner, '40, chairman of the committee on exhibits.

Wesley J. Van Zee, '40, heads the reception committee and Jack M. Klips, '40, is in charge of arrangements.

Invisible Class Result Of Research
By Dr. Hawley Cartwright Of Faculty

Glass can be made almost "invisible" as a result of the work of Dr. Hawley Cartwright of the department of Physics in the Institute. A definite study of metallic fluorides deposited on the glass results from surface reflection through the principle of interference of light, enough so that practically all of the light is transmitted and none reflected.

This development is of especial interest to photographers, since the reflection of reflected light at glass-air surfaces in houses increases the loss of "speed". In large buildings, it is necessary from the optical standpoint to have several separate lenses, necessitating as many as five or six. These separate reflections into light bulbs causes some per cent of the light that reaches it, this causes ausalizable loss in the amount of light that is able to act on the film. Unfortunately, mirrors are made of glass, and in extreme cases, about one per cent of this reflected light is reflected from a mirror placed in front of a mirror placed on the opposite wall.

The glass is "practically invisible" as a result of the work of Dr. Hawley Cartwright of the Department of Physics in the Institute. A minor coating on the surface of the glass acts as a "mirror".

Invisible Glass Result Of Research
By Dr. Hawley Cartwright Of Faculty

Glass can be made almost "invisible" as a result of the work of Dr. Hawley Cartwright of the department of Physics in the Institute. A definite study of metallic fluorides deposited on the glass results from surface reflection through the principle of interference of light, enough so that practically all of the light is transmitted and none reflected. This development is of especial interest to photographers, since the reflection of reflected light at glass-air surfaces in houses increases the loss of "speed". In large buildings, it is necessary from the optical standpoint to have several separate lenses, necessitating as many as five or six. These separate reflections into light bulbs causes some per cent of the light that reaches it, this causes a usable loss in the amount of light that is able to act on the film. Unfortunately, mirrors are made of glass, and in extreme cases, about one per cent of this reflected light is reflected from a mirror placed in front of a mirror placed on the opposite wall.

The glass is "practically invisible" as a result of the work of Dr. Hawley Cartwright of the Department of Physics in the Institute. A minor coating on the surface of the glass acts as a "mirror".

Invisible Glass Result Of Research
By Dr. Hawley Cartwright Of Faculty

Glass can be made almost "invisible" as a result of the work of Dr. Hawley Cartwright of the department of Physics in the Institute. A definite study of metallic fluorides deposited on the glass results from surface reflection through the principle of interference of light, enough so that practically all of the light is transmitted and none reflected. This development is of especial interest to photographers, since the reflection of reflected light at glass-air surfaces in houses increases the loss of "speed". In large buildings, it is necessary from the optical standpoint to have several separate lenses, necessitating as many as five or six. These separate reflections into light bulbs causes some per cent of the light that reaches it, this causes a usable loss in the amount of light that is able to act on the film. Unfortunately, mirrors are made of glass, and in extreme cases, about one per cent of this reflected light is reflected from a mirror placed in front of a mirror placed on the opposite wall.

The glass is "practically invisible" as a result of the work of Dr. Hawley Cartwright of the Department of Physics in the Institute. A minor coating on the surface of the glass acts as a "mirror".

Invisible Glass Result Of Research
By Dr. Hawley Cartwright Of Faculty

Glass can be made almost "invisible" as a result of the work of Dr. Hawley Cartwright of the department of Physics in the Institute. A definite study of metallic fluorides deposited on the glass results from surface reflection through the principle of interference of light, enough so that practically all of the light is transmitted and none reflected. This development is of especial interest to photographers, since the reflection of reflected light at glass-air surfaces in houses increases the loss of "speed". In large buildings, it is necessary from the optical standpoint to have several separate lenses, necessitating as many as five or six. These separate reflections into light bulbs causes some per cent of the light that reaches it, this causes a usable loss in the amount of light that is able to act on the film. Unfortunately, mirrors are made of glass, and in extreme cases, about one per cent of this reflected light is reflected from a mirror placed in front of a mirror placed on the opposite wall.

The glass is "practically invisible" as a result of the work of Dr. Hawley Cartwright of the Department of Physics in the Institute. A minor coating on the surface of the glass acts as a "mirror".

Invisible Glass Result Of Research
By Dr. Hawley Cartwright Of Faculty

Glass can be made almost "invisible" as a result of the work of Dr. Hawley Cartwright of the department of Physics in the Institute. A definite study of metallic fluorides deposited on the glass results from surface reflection through the principle of interference of light, enough so that practically all of the light is transmitted and none reflected. This development is of especial interest to photographers, since the reflection of reflected light at glass-air surfaces in houses increases the loss of "speed". In large buildings, it is necessary from the optical standpoint to have several separate lenses, necessitating as many as five or six. These separate reflections into light bulbs causes some per cent of the light that reaches it, this causes a usable loss in the amount of light that is able to act on the film. Unfortunately, mirrors are made of glass, and in extreme cases, about one per cent of this reflected light is reflected from a mirror placed in front of a mirror placed on the opposite wall.

The glass is "practically invisible" as a result of the work of Dr. Hawley Cartwright of the Department of Physics in the Institute. A minor coating on the surface of the glass acts as a "mirror".