Dr. Max Jakob Will Give Series at Harvard, Technology April 7-15

Dr. Max Jakob, an authority on heat, will give a series of lectures at the Hot Land Laboratory of the German Institute of Standards at Charlottenburg, which will give a series of lectures at Harvard University and Technology between April 7 and April 15, on heat transmission and the properties of insulators.

Dr. Jakob’s lectures will be given in the following times and places:

At Harvard University, three lectures will be given. These will be in 1031, Rice Hall, at 4 o’clock on the following afternoons: Tuesday, April 7; Properties of water and steam; Wednesday, April 8; Heat transfer between a building surface and a liquid; and Thursday, April 9; Heat transfer between building liquids and vapor bubbles.

At Technology, three lectures will be given. These will be in Room 6-120, at 4 o’clock in the afternoon: Monday, April 13; Conduction as a problem of heat transfer; Tuesday, April 14; Verification of the film theory of condensation; and Wednesday, April 15, as the pampered daughter of the mayor. Ruth G. Whitcomb, ’39, portrayed the mayor. Robert W. Pastene, ’39, as a member of the American Engineers and the editor of the Society of Scientific Advisors to the Scientific Advisor to the American Engineers and the Editor of the Journal.

Dr. Jakob, who holds degrees in both electrical engineering and chemical physics from the University of Munich, received his doctor’s degree from the University of Munich. A paper he held at a symposium in New York on the subject of the Society of Engineers and the Editor of the Journal.

A model of the new “Queen Mary,” on which Technology architects are working will be on display in Room 10-100.

Dean’s List Available

In Information Office

Publication of the Dean’s List of Undergraduates of High School Standing, for the first term of the 1936-37 Institute year has recently been announced. Copies may be secured in the Information Office, Room 10-100.

Seniors in the Class of 1936 led in representation on the list, with a greater percentage of men on each of the three divisions of the list. 46.5 per cent of the seniors are on the Dean’s List, with 4.7 per cent in the first, 14.6 per cent in the second, and 26.6 per cent in the third.

Juniors came next in representation on the list, having a total of 37.1 per cent of the class included. Among the Juniors, 5.4 per cent are on the first list, 18.4 per cent on the second, and 15.2 per cent on the third.

The Sophomores ranked above the Freshmen and Juniors in the percentage of men placed on the first division of the Dean’s List. In second, they surpassed the Freshmen, but in the third, the Sophomores had the lowest representation of any of the classes. They placed a total of 28.2 per cent on the first, 18.3 per cent on the second, and 7.1 per cent on the third.

Total representation of the freshmen was equal to that of the Sophomores—21.7 per cent. On the first Dean’s List, they placed 8.6 per cent of the Class, on the second, 8.7 per cent, and 18.4 per cent on the third.

Approximately 30 per cent of the freshmen listed by the Dean are on the list. The list includes only those students who are not included in the Dean’s List.

Science itself is now discovering the Newtonian concept. Economics is becoming humanized. But extraction continues to devise its energies to gather facts and to sharpen the minds of the upper classes for the upper classes are not included in the Dean’s List.

Science itself is now discovering the Newtonian concept. Economics is becoming humanized. But extraction continues to devise its energies to gather facts and to sharpen the minds of the upper classes for the upper classes are not included in the Dean’s List.

Kings got their chic from gastropods

In ancient times, merchants of ancient Tyre did a brisk business dying the robes of royalty. Their famous Tyrian purple came from a marine gastropod found in the Mediterranean Sea. Since each shellfish yielded only a tiny bit of dye, the enormous quantities needed made this color too costly for anyone but kings and such. Hence the expression: “Born to the purple.”

In 1856, an English chemist found a way to make synthetic colors out of coal tar. Following this discovery, a great dye industry developed, and American textile manufacturers were dependent on foreign sources right up to the World War II.

Today, the dye industry is dominated by American producers, but their own dyestuff industry, beginning in 1917, is one of the great achievements of American chemistry. It freed us from dependence on foreign dyes—and today American dye makers supply a complete line of colors for the dying of cotton, silk, wool, rayon and acetate yarns, paper and leather.

As to quality, American dyes make no apologies to gastropods or anyone else. Dr. Post chemists played a leading part in the development of American dyes—a good example of the way research chemists affects the lives of everyone, and of the Du Pont pledge . . .