MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MANAGING BOARD
I. F. Haggerty ’33, General Manager
B. W. Hoar ’33, Secretary
R. H. M. Lockwood ’33, Treasurer
D. H. Pratt ’33, Superintendent

OFFICES OF THE TECH
Walter Memorial, Cambridge, Mass.

Telephone, University 709

Boston—From the Boston, 261-343, South Station

Telegraph, University 714

Prairielands, Princeton, N. J.

Prairielands, Princeton, N. J.

Prairielands, Princeton, N. J.

Prairielands, Princeton, N. J.

Business Service Department
G. B. Goldsmith ’34, Associate Manager
J. D. Hostetler ’33

Circulation Department
A. M. Hoering ’34, Associate Manager
A. J. Fawley ’33

Advertising Department
A. M. Hoering ’34, Associate Manager
A. J. Fawley ’33

Production Staff
J. S. Borrieri ’34
M. W. Healy ’33
R. P. Matter ’33
R. C. L. Strickler’33
T. C. Davis ’31, W. B. Stineisher ’33
C. H. Wood ’33
L. F. Roome ’33

The Technical Publishing Company, Inc.
490 Commonwealth Avenue

In Charge of this Issue: Hamilton H. Dew ’35

DORMITORY RACKETS
A LETTER recently received and published by THE TECH voiced a complaint by a dormitory man about another dormitory man. Such complaints are not infrequent in any halls of residence. What can be done about them?

What complaint did the dormitory man have? What can be done about it?

PRIDE AND PRIDE
PRIDE has its place, admittedly. But what do we mean by pride? Ordinary means of a proud person, one pictures in his imagination a man who is overthrown with his own importance, who is conceited, and who has a corresponding warped view of the capacities of others. But our dictionary gives another meaning: a justifiable sense for one’s own ability, a proper sense of personal dignity, character, and worth.

Technology graduates have a reputation for thorough acquaintance with the uses of mammoth machines. No one speaks more loudly about his knowledge of machinery than the typical dormitory man.

Is it correct to say that a dormitory man has a reputation for thorough acquaintance with the uses of machinery? Is it correct to say that a dormitory man is a know-all about machinery?

The TECH

Big Red boiler in Steam Laboratory Explained By Professor Spankhake

Being Used To Observe Action Of Ducts In Water

Always the center of attraction for ingenuity, the boiler in the Steam Laboratory, Room 124-39, is again a point of interest. The object of attraction this week is a large instrument which has become an object of inspection, particularly by the students. The instrument is the big Red boiler, a collection of tubes through which the Steam Laboratory goes to work in making investigations.

Under the direction of Professor Willis H. Ingerson, the big Red boiler was recently developed as an efficient apparatus for making tests of the steam and water relations which often bear in radiators. By this "hammering," combined with high temperature and sudden pressure, rust is produced and iron is transformed into a brittle condition, its tensile strength being reduced to 15 per cent. The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

Always the center of attraction for ingenuity, the boiler in the Steam Laboratory, Room 124-39, is again a point of interest. The object of attraction this week is a large instrument which has become an object of inspection, particularly by the students. The instrument is the big Red boiler, a collection of tubes through which the Steam Laboratory goes to work in making investigations.

Under the direction of Professor Willis H. Ingerson, the big Red boiler was recently developed as an efficient apparatus for making tests of the steam and water relations which often bear in radiators. By this "hammering," combined with high temperature and sudden pressure, rust is produced and iron is transformed into a brittle condition, its tensile strength being reduced to 15 per cent. The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.

The big Red boiler is pneumatically driven, reaching a pressure of 60 pounds per square inch. By means of a stopcock, the steam may be discharged into a large test chamber, and the water pressure may be equalized. The apparatus is then placed in a bath of water at a water temperature of 100 degrees, and the results are compared with those obtained in a similar bath of water at a temperature of 80 degrees.

The professor will make observations to determine the extent of rusting in materials which have been subjected to the action of steam and water in pores and crevices.