ENGINEERING AND SCIENTIFIC NOTES

Our readers will perhaps recall that some time ago we published an account of a wireless system for signaling from moving trains which had been successfully installed on some of the trains of the Lackawanna Railroad. During the recent severe storm which swept over the country, wireless telegraph lines and laying up traffic generally, this system proved so advantageous that it received a considerable stimulus for immediate future expansion.

"The wireless proved its value to the railroads," said President Trueback's secretary. "Without it we would have had to run blindly where traffic was possible at all. With its help we knew in a general way what we were about. It won't be long until every through train, perhaps every suburban train, will be equipped with wireless apparatus, so that it can send messages and take orders in the worst of storms, even while maintaining speed."

"The storm was the worst in our history. Our experience with the wireless has demonstrated the necessity of extending and improving the present methods of air communication."

The block signal system now commonly adopted in combination with track contacts has done wonders in reducing the risk of accidents. The tower men are stationed every few miles, and unless something goes wrong inside the block the train must clear each zone within a certain time. When it does not so the watcher at the far end of the block knows that something is amiss; but what? The towermen are necessarily in ignorance until someone from the halted train brings the news. The trainman carrying the message to the block tower may have to cover a distance of a couple of miles. Again it happens every now and then that an engineer fails to see cautionary signals which should make him slacken speed or bring his train to a standstill. The result may be a collision with loss of life.

It will therefore be seen how desirable it is that each train should have its own means of creating about it a zone to be communicable to others. Wireless has been successfully installed on some railways for this purpose. The opera-tions were simple enough. Wireless has demonstrated the necessity of extending and improving the present methods of air communication."

The block signal system now commonly adopted in combination with track contacts has done wonders in reducing the risk of accidents. The tower men are stationed every few miles, and unless something goes wrong inside the block the train must clear each zone within a certain time. When it does not so the watcher at the far end of the block knows that something is amiss; but what? The towermen are necessarily in ignorance until someone from the halted train brings the news. The trainman carrying the message to the block tower may have to cover a distance of a couple of miles. Again it happens every now and then that an engineer fails to see cautionary signals which should make him slacken speed or bring his train to a standstill. The result may be a collision with loss of life.

It will therefore be seen how desirable it is that each train should have its own means of creating about it a zone to be communicable to others. Wireless has been successfully installed on some railways for this purpose. The operations were simple enough. Wireless has demonstrated the necessity of extending and improving the present methods of air communication.

The block signal system now commonly adopted in combination with track contacts has done wonders in reducing the risk of accidents. The tower men are stationed every few miles, and unless something goes wrong inside the block the train must clear each zone within a certain time. When it does not so the watcher at the far end of the block knows that something is amiss; but what? The towermen are necessarily in ignorance until someone from the halted train brings the news. The trainman carrying the message to the block tower may have to cover a distance of a couple of miles. Again it happens every now and then that an engineer fails to see cautionary signals which should make him slacken speed or bring his train to a standstill. The result may be a collision with loss of life.

It will therefore be seen how desirable it is that each train should have its own means of creating about it a zone to be communicable to others. Wireless has been successfully installed on some railways for this purpose. The operations were simple enough. Wireless has demonstrated the necessity of extending and improving the present methods of air communication."

THE TECH. BOSTON, MASS. TUESDAY, MARCH 19, 1914.

"Bang-o!"

It was only a few years ago that we started to sell Fatimas. We first offered them in the college towns. The purity and choice quality of the tobacco was instantly appreciated by the students—now Fatimas hold the record for the greatest punk in cigarette history—the biggest sale of any brand in the United States today! No expense wasted on the package—quality ad in the tobacco—twenty good ones!

FATIMA

McMORROW

College Shoes for College Men

38 Washington St., Boston, Mass.

OPPOSITE THOMPSON'S SPA

GET YOUR BOOKS AT

The Old Corner Book Store, Inc.

27 AND 29 BROMFIELD STREET

BOSTON

-- Distinctively Individual--

20 for 15¢

What is perfectly plain is the fact that the advent of the wireless operator aboard a moving train adds just one more watchman who will be continuously on the alert and can cooperate with towermen in keeping the engine drivers informed as to the state of the road ahead. Legally, the next development of the system will be a telephone installation extending from the room of the wireless operator to the cab of the locomotive, and, perhaps, even to the engineer's position if his task separates him from the engineer.

A cup has been established for fraternity scholarship at Purdue.