Saturday, for the first time since 1906, Harvard won the annual cross-country race from Technology. The score was 25 to 45. Harvard, led by Alex, who covered the five-mile course in 21 minutes, 55.2 seconds. Captain Watkins headed the Tech team, finishing fourth. Following Watkins were four more Tech men—W. S. Davis 1911, H. H. Benson 1913, L. O. Mills 1912, E. E. Ferry 1912. If Tech could have squeezed in another man here a tie score would have resulted, but K. C. Overturf 1912, the last man to cross the finish line, was finished with a thirteen-point deficit.

The result of the race was a surprise to many, for Technology races Tech has carried off four times. The chances of one or two aided Harvard to a great extent, and if the race had not been run over a different course a different result might have been expected, although the superb form of the Harvard team would have assured them a first and second honors. As it was, however, a good combination of cross-country and road running was on display that would work then does the Technology course. It lacks the brook and stone walls and is even there. There is only one fence to cross. The grades are slight, with few hard turns, and it is a fair hill.

The course starts across fields, then comes a patch of woods to the terminus of the Chestnut Hill car line, which is where the race ends. The course next leads across the golf links of the Boston Country Club. The third leg of the course is on the street. Three-eight of a mile beyond, the course goes through a patch of woods and over high ground across the Chestnut Hill car line again and over the high road. Here the street again, which comes all road running, finishing with a straightaway of 150 yards. At the crack of the starter's gun Benson sprang to the foe, but as the bunch contracted to pass through the gate, Lawless held the lead, holding it for the first one and a half, while his teammate, Jacques, slowly overtook him.

The end of the first lap at the corner of Chestnut Hill and Commonwealth Avenues, two and one-half miles from the start, showed Jacques about five yards in the lead, Alex who was closely followed by Davis. All three were running easily. The rest of the Tech team was well bunched and close to each other, in an effort to pick the winners at this point, although it was evident that the fight for first place would be down to a close contest between Jacques and Lawless, with the advantage of experience to favor of the former

Saturday, the last day of the Harvard-Weston-Harvard match, was won by Weston 269 to 315. Weston led at the third hole, 8 strokes, and never lost. At the end of the fourth round, Weston led by six strokes. It is claimed that this is the first time in the history of Weston's match that they have won.

The Electrical Engineering Society held its weekly encampment Saturday afternoon, visiting the Medford Gas Engine Plant of the Boston Elevated Railway. The main feature was the operation of three large 500 Horse Power Engines, each 500 horsepower, in cycle. These engines are arranged to be started by an application of compressed air, 120 pounds of which is used in starting one machine, while 300 pounds are used in starting each of the other two. A device is provided whereby the engine may be started instantly from either end of the cylinder, giving a means of backing the engine without any further trouble. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.

The botto room was next visited, here the pressure engines were examined. The engines have the usual SPRAGUE compressors making the gas which is used is compressed and then sent to the engines. This gas is used entirely in this process. The area is fenced and often kept been known to last two weeks without hold. The water used for condensation purposes is gotten from three artesian wells and then compressed by double acting pumps, the piston of the engine being the power that makes the water used for condensation purposes. Each end of the piston alternately, giving a means of backing the engine without any further trouble. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.

Strolling through the community because of the throb of the engines, the noise, the excitement, the fires are banked and often have been known to go out. There is the noise of the engines, the noise of the engines, the noise of the engines. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.

The place was a patch of woods to the terminus of the County Club, and along a road with a straightaway of 150 yards. Here the pressure producers were examined. The engines have the usual SPRAGUE compressors making the gas which is used is compressed and then sent to the engines. This gas is used entirely in this process. The area is fenced and often kept been known to last two weeks without hold. The water used for condensation purposes is gotten from three artesian wells and then compressed by double acting pumps, the piston of the engine being the power that makes the water used for condensation purposes. Each end of the piston alternately, giving a means of backing the engine without any further trouble. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.

The botto room was next visited, here the pressure engines were examined. The engines have the usual SPRAGUE compressors making the gas which is used is compressed and then sent to the engines. This gas is used entirely in this process. The area is fenced and often kept been known to last two weeks without hold. The water used for condensation purposes is gotten from three artesian wells and then compressed by double acting pumps, the piston of the engine being the power that makes the water used for condensation purposes. Each end of the piston alternately, giving a means of backing the engine without any further trouble. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.

The botto room was next visited, here the pressure engines were examined. The engines have the usual SPRAGUE compressors making the gas which is used is compressed and then sent to the engines. This gas is used entirely in this process. The area is fenced and often kept been known to last two weeks without hold. The water used for condensation purposes is gotten from three artesian wells and then compressed by double acting pumps, the piston of the engine being the power that makes the water used for condensation purposes. Each end of the piston alternately, giving a means of backing the engine without any further trouble. The gas is supplied to each end of the piston alternately, being generated in the gas plant through a gridiron affair. The valve gear is always working, cut-off being controlled only by the passage of the gas.