ELECTROCHEMISTRY

By H. M. Goodwin.

Course XIV — Electrochemistry — is of an advanced nature, and the writer believes that its history is necessarily brief as compared with that of most of the other Institute Courses. A consideration of the evolution of the course into its present form and of the conditions in the industrial world, which have led up to its establishment and given rise to the profession of electrochemistry, is not without general interest however and should be of value to those who are contemplating electing electrochemistry as a profession. It will indicate the character and scope of the problems which an electrochemist is likely to be called upon to solve and will help to answer the question so frequently asked by prospective students, "What is Electrochemistry, and what does it prepare a graduate on leaving the Institute?"

As a recognized profession, electrochemistry is the most recent of those which have arisen through the application of electricity to industrial problems of the day. Its evolution has taken place in much the same way as that of electrical engineering, which in the early eighties was barely more than that branch of applied physics dealing with the application of electricity to such infant industries as telephony, electric lighting, and later electric railroads, etc. The first course in Electrochemistry was offered at the Institute in 1882 and has continued without interruption since 1894. The curriculum was clearly recognized. In that remark- able document, "The Objects and Plan of the Study of Physics," the writer was one, even prior to the opening of the laboratory, had described in detail the laboratory of Physics at the Institute, and the Corporation having assigned the needed room, in October, 1882, the Physical Laboratory of the Institute was opened to students, and systematic laboratory instruction to classes in physics was then given for the first time in the world. A little later the Cor- poration voted to give the laboratory the very appropriate title, Rogers Laboratory of Physics.

The course in Electrochemistry is designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi- ty, and in a few instances, as in the laboratories of W. Thompson's laboratory in the west half of the present General Li-

In the "Scope and Plan of the School of Industrial Sciences," 1864, Professor Rogers further sets forth the desirability of a laboratory instruction in physics beyond the customary lecture course, whereby the student may be taught the processes employed in various physical measurements. This conception of a physical laboratory, designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

By Charles R. Cross.

By the writer, who has been a student of the course, is of an advanced nature, and the writer believes that its history is necessarily brief as compared with that of most of the other Institute Courses. A consideration of the evolution of the course into its present form and of the conditions in the industrial world, which have led up to its establishment and given rise to the profession of electrochemistry, is not without general interest however and should be of value to those who are contemplating electing electrochemistry as a profession. It will indicate the character and scope of the problems which an electrochemist is likely to be called upon to solve and will help to answer the question so frequently asked by prospective students, "What is Electrochemistry, and what does it prepare a graduate on leaving the Institute?"

As a recognized profession, electrochemistry is the most recent of those which have arisen through the application of electricity to industrial problems of the day. Its evolution has taken place in much the same way as that of electrical engineering, which in the early eighties was barely more than that branch of applied physics dealing with the application of electricity to such infant industries as telephony, electric lighting, and later electric railroads, etc. The first course in Electrochemistry was offered at the Institute in 1882 and has continued without interruption since 1894. The curriculum was clearly recognized. In that remark- able document, "The Objects and Plan of the Study of Physics," the writer was one, even prior to the opening of the laboratory, had described in detail the laboratory of Physics at the Institute, and the Corporation having assigned the needed room, in October, 1882, the Physical Laboratory of the Institute was opened to students, and systematic laboratory instruction to classes in physics was then given for the first time in the world. A little later the Cor- poration voted to give the laboratory the very appropriate title, Rogers Laboratory of Physics.

The course in Electrochemistry is designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

In the "Scope and Plan of the School of Industrial Sciences," 1864, Professor Rogers further sets forth the desirability of a laboratory instruction in physics beyond the customary lecture course, whereby the student may be taught the processes employed in various physical measurements. This conception of a physical laboratory, designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

By Louis Derr.

If we follow the dictionary and define engineering as the art of constructing civil or military works which require a special knowledge of machinery and the principles of mechanics, we may at once declare that the relation of physics to engineering is that of the foundation to the house; for the laws of motion and the action of forces are among the fundamental propositions of physics. Widely differing applications of physi-

The course in Physics is of an advanced nature, and the writer believes that its history is necessarily brief as compared with that of most of the other Institute Courses. A consideration of the evolution of the course into its present form and of the conditions in the industrial world, which have led up to its establishment and given rise to the profession of electrochemistry, is not without general interest however and should be of value to those who are contemplating electing electrochemistry as a profession. It will indicate the character and scope of the problems which an electrochemist is likely to be called upon to solve and will help to answer the question so frequently asked by prospective students, "What is Electrochemistry, and what does it prepare a graduate on leaving the Institute?"

As a recognized profession, electrochemistry is the most recent of those which have arisen through the application of electricity to industrial problems of the day. Its evolution has taken place in much the same way as that of electrical engineering, which in the early eighties was barely more than that branch of applied physics dealing with the application of electricity to such infant industries as telephony, electric lighting, and later electric railroads, etc. The first course in Electrochemistry was offered at the Institute in 1882 and has continued without interruption since 1894. The curriculum was clearly recognized. In that remark- able document, "The Objects and Plan of the Study of Physics," the writer was one, even prior to the opening of the laboratory, had described in detail the laboratory of Physics at the Institute, and the Corporation having assigned the needed room, in October, 1882, the Physical Laboratory of the Institute was opened to students, and systematic laboratory instruction to classes in physics was then given for the first time in the world. A little later the Cor- poration voted to give the laboratory the very appropriate title, Rogers Laboratory of Physics.

The course in Electrochemistry is designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

In the "Scope and Plan of the School of Industrial Sciences," 1864, Professor Rogers further sets forth the desirability of a laboratory instruction in physics beyond the customary lecture course, whereby the student may be taught the processes employed in various physical measurements. This conception of a physical laboratory, designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

By Charles R. Cross.

By the writer, who has been a student of the course, is of an advanced nature, and the writer believes that its history is necessarily brief as compared with that of most of the other Institute Courses. A consideration of the evolution of the course into its present form and of the conditions in the industrial world, which have led up to its establishment and given rise to the profession of electrochemistry, is not without general interest however and should be of value to those who are contemplating electing electrochemistry as a profession. It will indicate the character and scope of the problems which an electrochemist is likely to be called upon to solve and will help to answer the question so frequently asked by prospective students, "What is Electrochemistry, and what does it prepare a graduate on leaving the Institute?"

As a recognized profession, electrochemistry is the most recent of those which have arisen through the application of electricity to industrial problems of the day. Its evolution has taken place in much the same way as that of electrical engineering, which in the early eighties was barely more than that branch of applied physics dealing with the application of electricity to such infant industries as telephony, electric lighting, and later electric railroads, etc. The first course in Electrochemistry was offered at the Institute in 1882 and has continued without interruption since 1894. The curriculum was clearly recognized. In that remark- able document, "The Objects and Plan of the Study of Physics," the writer was one, even prior to the opening of the laboratory, had described in detail the laboratory of Physics at the Institute, and the Corporation having assigned the needed room, in October, 1882, the Physical Laboratory of the Institute was opened to students, and systematic laboratory instruction to classes in physics was then given for the first time in the world. A little later the Cor- poration voted to give the laboratory the very appropriate title, Rogers Laboratory of Physics.

The course in Electrochemistry is designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

In the "Scope and Plan of the School of Industrial Sciences," 1864, Professor Rogers further sets forth the desirability of a laboratory instruction in physics beyond the customary lecture course, whereby the student may be taught the processes employed in various physical measurements. This conception of a physical laboratory, designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

By Charles R. Cross.

By the writer, who has been a student of the course, is of an advanced nature, and the writer believes that its history is necessarily brief as compared with that of most of the other Institute Courses. A consideration of the evolution of the course into its present form and of the conditions in the industrial world, which have led up to its establishment and given rise to the profession of electrochemistry, is not without general interest however and should be of value to those who are contemplating electing electrochemistry as a profession. It will indicate the character and scope of the problems which an electrochemist is likely to be called upon to solve and will help to answer the question so frequently asked by prospective students, "What is Electrochemistry, and what does it prepare a graduate on leaving the Institute?"

As a recognized profession, electrochemistry is the most recent of those which have arisen through the application of electricity to industrial problems of the day. Its evolution has taken place in much the same way as that of electrical engineering, which in the early eighties was barely more than that branch of applied physics dealing with the application of electricity to such infant industries as telephony, electric lighting, and later electric railroads, etc. The first course in Electrochemistry was offered at the Institute in 1882 and has continued without interruption since 1894. The curriculum was clearly recognized. In that remark- able document, "The Objects and Plan of the Study of Physics," the writer was one, even prior to the opening of the laboratory, had described in detail the laboratory of Physics at the Institute, and the Corporation having assigned the needed room, in October, 1882, the Physical Laboratory of the Institute was opened to students, and systematic laboratory instruction to classes in physics was then given for the first time in the world. A little later the Cor- poration voted to give the laboratory the very appropriate title, Rogers Laboratory of Physics.

The course in Electrochemistry is designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-

In the "Scope and Plan of the School of Industrial Sciences," 1864, Professor Rogers further sets forth the desirability of a laboratory instruction in physics beyond the customary lecture course, whereby the student may be taught the processes employed in various physical measurements. This conception of a physical laboratory, designed for the regular systematic teaching of students in classes, was an entirely new one in every respect. Advanced students had carried on physical researches in the foreign universi-