of three to confer with '95's athletic committee, and to arrange an acceptance of the challenge, with such conditions as might seem advisable. The meeting then adjourned.

We regret to see that '94 took any action at all regarding the matter. The challenge itself showed that its originators were unacquainted with the methods of the Institute, and if any action at all were taken, it should have been merely to inform the Freshmen that the challenge was unnecessary, inasmuch as the M. I. T. A. C. had already offered a valuable cup for the class championship, and that the annual outdoor meeting was the place at which to show the two classes' respective athletic abilities.

The M. I. T. A. C. will probably not sanction this meeting, believing that it would be prejudicial to the regular championship, and that, without their permission, the meeting would be unauthorized, and consequently those who competed in it, would thereby disqualify themselves as amateurs.

We hope that the subject will be dropped here, and that no hard feeling will arise. There will be just as much excitement in having the two classes' merits decided at the regular outdoor games; and the winner will have the sympathy of the whole Institute, which might not be the case if this extra meeting was held.

Dr. Gardiner's Lecture on Teaching.
(Second of the series.)

The lectures on "Teaching," begun by Professor Sedgwick, were continued on Saturday noon, March 12th, by Dr. Gardiner, who lectured on "The Teaching of Zoology and Animal Lessons in the Public Schools."

Dr. Gardiner read several paragraphs from an essay by Professor Huxley, to show that the objects of science teaching in the schools are "to train the young in the use of those tools which observe the phenomena that pass before their eyes, and to give information about the fundamental laws that govern the cause of things. The operations of reading, writing, and thinking are simply intellectual tools. It is not these, but physical science, that makes modern civilization above brute force. Without science, our education in the primary schools is simply that of the Romans 1800 years ago."

Dr. Gardiner said that the last statement was a strong one, but that it showed that observation was the one thing to be acquired for the advancement of science. There is nothing so essential to help observation in a child as the study of zoology. Not that it is desirable to have a child learn all the long names of the science, but to observe the forms, color, and habits of the more common animals, birds, and insects.

Biology and zoology in the last fifty years have done more for modern civilization than any other science. The works of Darwin have, to a great extent, permeated science and literature. The more one observes the ideas advanced by Darwin, the greater is his intellectual attainment.

There is always a "happy moment" in every one's life for teaching each subject. To detect this moment of instinctive readiness is the great object of every educator. There is a time in our lives when we are most pleased with fairy tales and play; then we soon read stories of adventure and romance; in a few more years comes the greatest activity in outdoor life; there is the collecting period, the constructive period, and the dissecting period. And, in all of us, a point of saturation is reached, and we pass on to the next period.

The best time to acquire this faculty of observation is in childhood. The knowledge of insects, of common birds, of snakes and toads, and of plants that one gains in childhood is worth much more, and remains longer, than that obtained from books in later life. Yet these lessons in natural history should be simple, and free from long scientific names; and the best instruments for these lessons are not costly microscopes and scientific apparatus, but a common magnifying glass and jackknife.