V. Do you believe in a reduction of the
tariff; and do you believe there would be a re-
duction in the tar(e)iff you should mend the hole
in your coat?

ALGEBRA.
I. If the equality
 \[YO : M :: E : U \]
 why don't
 \[YO = ME, \]
 and if \(YO \) equal \(ME \), why can't you stand
 for me once in a while?
II. Arithmetical Progression. Prove that
 the sum of two terms at the M. I. T. equals
 \$200.
III. A certain young lady is three times as
 old as B. B is 10 years of age; why, then, does
 the certain young lady try to make out her age is
 sweet sixteen?
IV. A boy at a fair spent his money on
 eighteen oranges and sixteen apples, which he
 ate. If he had had half again as much money,
 he would have had half again as much pain.
 Explain what was the matter with the boy, and
 who paid the doctor's bill.

PHYSICS.
I. Think of every unanswerable and un-
earthly question any one ever heard of, also
a few that no one ever heard of, and answer
them with great care, stating how you draw
your conclusions, \textit{i.e.}, with pencil or ink.

ENGLISH, RHETORIC, AND HISTORY.
I. Who was George Washington, and who
would now be thought the greatest man, George
Washington or John L. Sullivan?
II. What are the chief exports of the United
States? Are not Newburyport, Salem, and New
Bedford, kind of \textit{ex-sports} now?
III. Is the \textit{aim} of the study of rhetoric prac-
tical; that is, could it hit a bullseye at a thousand
yards?
IV. Can you parse (pass) the Brunswick
Exchange?
V. What is the nature and purpose of the
Introduction, or, in other words, was the \textit{purpose}
of the \textit{introduction} to me of that dull girl due to
your bad \textit{nature}?

CHEMISTRY.
I. What does the symbol \(H_2O \) tell us of the
composition of city milk?
II. Tell exactly what you mean when you
use the symbols I. O. U.; but if you don't mean
anything, don't tell.
III. Explain all that takes place when a
servant girl brings kerosene in contact with the
kitchen stove. Also tell if this is a chemical
or physical change; and if it is a physical change,
why will not physic cure the girl?
V. Give the principal characteristics of com-
mon gas? Is not the way your gas bill runs
up a characteristic of gas? If not, why not?

Metallic Thermometers.

It is interesting to note the advance which
hase been recently made in the construction
of one of the most useful of scientific instru-
ments, namely, the metallic thermometer.
The first to apply the unequal expansion of
metals to the construction of a thermometer was
Brègnet. His method consisted in suspending
a cone-shaped lamina, as it is called, from a sup-
port like that from which the needle of an ordi-
nary astatic galvanometer is dropped. The
lamina is a long metallic strip, composed of two
metals which expand unequally by heat. These
metals are soldered together lengthwise, and in
the above case, the strip was shaped into a cone,
the apex of which was attached to the support,
and the free end or base to a hand. Under the
action of heat the cone would unwind or open
out, because the more expansible metal was
placed inside. This motion carried the hand
with it, which, being adjusted over a suitably
marked disk, would indicate the temperature.
Since then marked improvements have been
made. At first an improvement was made in
the shape of the lamina, which consisted of two
flat strips of brass and steel, soldered together
lengthwise, and then bent \textit{into} the shape of a \textbf{U}
with the brass innermost, one end being made
fast, and the other connected to a wheel, moving
a pinion on which was fixed a hand which, after
adjustment, indicated the temperature Ex-