man drove up, and began to unload, and some of the workmen and spectators, whose caution overcame their curiosity, started uphill at a lively gait to an elevated point at safe distance.

The shooter, or "glycerine" man, as he is sometimes called, rode in a light, open carriage, drawn by a span of horses, which seemed to us to be very spirited, considering the kind of load they drew. On one side of the carriage, strapped into light iron Y's, were the shells and anchorage. The shot ordered was to contain eighty quarts of nitro-glycerine, requiring four shells or sections, each ten feet long. The shells are of tin, about three inches in diameter, and usually from six feet to sixteen feet in length.

The seat of the carriage, when tipped back, showed fifteen small compartments, padded and lined with leather, into which the cans of nitro-glycerine just fitted. The nitro-glycerine comes from the factories situated in the woods around the city, in square cans, holding six quarts or twenty pounds each.

Behind the carriage are carried the reels holding the lowering and firing lines.

First, the lowering reel was bolted securely in place outside the derrick, then the end of the line was carried in through a pulley directly over the hole, and an open iron hook fastened to it. Meanwhile the shooter was preparing the anchorage. The first shell was to be placed ten feet from the bottom of the hole, so ten feet of small tin tube called the "anchor" was wired on to its lower end. The shell was then placed in the hole, and lowered until it projected a few inches above the floor, hooked into the lowering line, and, as additional security against accident while filling, was tied fast by cords. Then the shooter gently emptied into it can after can of nitro-glycerine until full. With two men steadying the reel, the cords were untied, and the lowering began, very slowly and carefully. This is, perhaps, the most dangerous part of the operation, from the liability of the nitro-glycerine to be exploded by the friction of the shell against the side of the hole, a liability increased if the shell should leak or any of the fluid run down on the outside. Another danger is of the shell catching for an instant on the ends of the casing of the well, the hook slipping, and then the shell falling. Another cause of accident in very gassy wells has been that the agitation caused by lowering the shells through the oil has caused the well to flow, throwing out the shot, which, exploding, in several instances has not only blown machinery and workmen to fragments, but has killed persons at a distance.

The shell at last safely down, the wire is lowered and raised a few times, to make sure that the hook is loosened, and then carefully wound up.

The next shell had forty-three feet of anchor to bring it up higher in the sand. It was filled and lowered as the first. The third shell rested directly upon the second, and the fourth upon the third, so that the shot when all in consisted of two divisions forty-three feet apart; twenty quarts in the bottom division and sixty quarts in the top.

The lowering reel was now removed, and in its place was put a smaller reel carrying a lighter round wire, to lower the squib which fires the shot. The squib is a very small shell, like a long tomato can, holding two quarts or more of nitro-glycerine. In the top are put four to six percussion caps on little anvils, one above the other, and above all a broad cast-iron disk. The squib line, after running over the pulley, and before it is fastened to the squib, is passed through a little tin tube one inch in diameter and sixteen inches long, on the bottom of which is a heavy annular piece of lead. A man holds this lead weight in his hand while the squib is being lowered. Meanwhile the workmen are picking up tools and loose pieces, stowing them away, putting out all fires, and warning the neighbors to do so; in short, preparing as for a storm.

All ready, we take refuge in the engine-house, or go up on the hill. At the command, "Let her go," the man in the derrick drops the lead weight and runs. We hear the weight jingling as it runs down on the wire, then a thud as it plunges into the oil, and in a moment a sudden jarring of the earth and a sharp report like a pistol tell us that two hundred and sixty-six pounds of