nearly three hundred dollars have been pledged. The class of ’02, at a meeting in December, considered the project of uniting with the present students, but decided to await the action of the Alumni in regard to a memorial, before giving a definite answer. The Alumni, at the annual meeting in January, decided to defer all action on the question for at least two years, until the association should be in condition to erect a fitting and satisfactory memorial.

Although no formal assent has been given by ’82, the committee are of the opinion that the members of the class favor the plan as given in the report, and desire to assist. It is necessary, in order to have the memorial completed before the next school year, to place an order for a tablet in the hands of a competent sculptor as soon as possible. The present outlook is favorable, and the committee desire to have final action taken by the school at once.

A meeting has been called for Friday, March 2, at 4.30 P. M., in Room 4, and every student is requested to be present.

The Baldwin Locomotive Works.

The visit of the Σ. M. E. Society to this world-renowned establishment in Philadelphia was rendered especially interesting through the courtesy of Mr. E. H. Williams, one of the firm, who accompanied the party. The drawing-room was first visited. We were told that no blue copies were sent to the shops, drawings on cards and tracings being substituted. The drawings of the different forms and sizes of each piece used in a locomotive are pasted together in books and indexed for reference.

The model-room, adjoining, presented a comprehensive view of the progress of American locomotive engineering, and a brief review of it may be interesting. Matthew Baldwin, in 1832, built an engine called “Old Ironsides,” for the Germantown and Norristown Railroad. It was made after the English practice of the day; had cylinders nine and one half by eighteen inches, and weighed four tons. Wood was used for the spokes and rims of the wheels, as well as for the frame of the engine. The iron frame and “half-crank” were introduced in 1834, during which year five engines were built and the shop removed to its present site. Other improvements were the ground steam-joint, a combination of wood and iron in the driving wheels, and the flexible beam truck, which allowed the forward drivers to be formed into a truck to accommodate themselves to curves, and yet be connected by a side rod to the back drivers. The standard American locomotive of to-day, with four drivers and a four-wheeled truck, was adopted by Mr. Baldwin in 1846; but later a fast passenger engine for the Vermont Central Railroad was built which had cylinders seventeen and one quarter by twenty inches, and a single pair of drivers six and one-half feet in diameter. It is said that this engine could start from a state of rest and run a mile in forty-three seconds. The adoption of the link motion completed the modern locomotive, excepting a few minor details. Our attention was called to the model of a sleeping car, with a monitor top, which was run in 1845 on the Cumberland Valley Railroad, though it was not patented till 1862. In another place an upright stationary engine made by Mr. Baldwin before 1830, was shown us. It occupied little space and had been almost constantly in use, though it has been partially rebuilt recently. Proceeding into the shops, we were told that each engine had its own department, where all the small pieces belonging to it were kept. All work is accurately fitted to gauges, which are made from a system of standards kept exclusively for the purpose. Like parts will, therefore, fit accurately in all locomotives of the same class. We saw a good example of this in the straps of a connecting rod, which fitted equally well another rod. In going through the various shops, we were impressed with the system. Frames are planed and slotted to gauges, and drilled to steel-bushed templets, cylinders are bored and planed, and steam-ports, with valves and steam chests, finished and fitted.