here in examining the drawings, photographs, etc., on the walls and tables. The Shaw locomotive was conspicuous in photographs and a large painting. Nearly every scientific and technical periodical published was found on file at these rooms.

The students then proceeded to the station of the Brush Electric Lighting Company. Here were found eight Porter-Allen engines, of about forty-five horse-power each, running at two hundred and thirty revolutions per minute, and each belted to a single dynamo. A large double Corliss, of about five hundred horse-power, was running at seventy-five revolutions, driving eight dynamos, with more to be added. The boilers consisted of four Babcock & Wilcox and six return flue boilers, and were those on which a thorough comparative test has recently been made by Mr. J. C. Hoadly, and the results published in Van Nostrand's Magazine for January.

WILLIAM SELLERS & CO.

On the following morning the manufactory of William Sellers & Co. was visited, the party being received and conducted through the establishment by Mr. Coleman Sellers. Mr. Lewis, class of '75, M. I. T., who is employed by the company, also accompanied the party.

Mr. Sellers's descriptions of the machines, of the requirements for special work, of adjustment and construction, were exceedingly thorough, and the students were very earnest in their praise of his clear explanations and ready answers to all questions. One of the most noticeable devices in the machine shops was an attachment for lathe feeding. Instead of using gears to transmit the motion from the spindle shaft to the rotating rod running to the tool rest, this company uses a very ingenious device, the invention of Mr. Coleman Sellers. Two steel disks, about six inches in diameter, are fastened on the ends of the shafts, from one of which the motion is to be transmitted to the other. These disks are hollowed somewhat on both sides, leaving three eighths of an inch or so at the circumference. Between these two shafts runs another, which may be moved in either direction, and on this are two brass disks of about the same diameter as those above, but convex on the surfaces toward each other. These can be clamped so as to enclose a portion of the rim of each steel disk, and, by varying the position of this free shaft, any desired speed of tool rest can be obtained. This method will of course not do for screw cutting, but for common lathe work it would appear invaluable. The device is patented.

Considerable time was devoted to the draughting room, and to an explanation of the company's methods of making and keeping drawings and tracings. Mr. Sellers pointed out the advantages of the "card catalogue" for reference, and strongly urged every young man, who had not already done so, to begin such a catalogue at once.

Anything which is likely to be of use in the future can easily be jotted down on a small card, labelled and filed, and can be readily found when required. Newspaper clippings, etc., can be enclosed in envelopes of the same size as the cards and filed in the same manner. Mr. Sellers gave practical suggestions for using sulphur in fastening the bed bolts of a planer or other heavy machine, and pointed out the requirements for correctly designed drill sharpeners and gear cutters, of which examples were shown. A small steam hammer was seen running at three hundred and sixty strokes per minute.

The general shop measurements and scales were all in English measure, inches and fractions (sixteenths, etc.). In the injector department, however, all measurements were in the metric system, which the company have here given a very thorough trial. On inquiring about the success of this system in regular shop work, the excursionists were answered by being each presented with a pamphlet containing Mr. Sellers's address before the Society of Mechanical Engineers. In this address the gentleman takes the ground that the metric system is not fitted for shop uses, and gives the results of the