Referring again to Fig. 1, it will be seen that during the past four years the number of entering students has risen to the highest point yet attained, the curve here becoming nearly a straight line. Never before has there been so rapid and steady an increase in the number of students, and we may look upon it as an omen of better times in the future. The Institute seems to be entering upon a new era of prosperity; and, with the promise of a new building and better facilities, we may predict that the number of students will continue to increase until it reaches a point far higher than any hitherto attained.

The plan now under consideration for the establishment of a suitable memorial of President Rogers has the TECI's hearty approval, and it will have the cordial support of every student who is in any degree acquainted with the intimate connection of Prof. Rogers with the Institute. It is most fitting that this tribute to the memory of the one "who was, more than any other, the founder of our institution" should be rendered by those students who were members of the school at the time of his death; and especially should the class of '82, whose graduation day must ever be hallowed by that sad event, be permitted to have a full share in the establishment of a memorial which may express the feeling of all the students, and their just appreciation of the manliness and geniality of his life.

We would call the attention of our subscribers, especially the students, to the advertisements in our columns, and advise our friends to examine them and, if possible, bestow their patronage on these firms.

The money derived from these advertisements is one of the principal means of support of the paper, and by contributing to the financial success of our advertisers they will be directly aiding a like success for the Tech.

The title of the article in No. 3, on "The Geology of Lake Mohawk," should have read "Lake Mohonk."

Contributions.

Coefficient of Friction in Leather Belting.

In a review of the various experimental methods of studying the change in the coefficient of friction between rubbing surfaces when the rate of sliding or slipping varies, it appeared that the slip of a belt over the surface of a pulley offered some special advantages over other methods. For by the rotation of the pulley under a fixed belt, the slipping may be made continuous and uniform for any desired length of time, the same surfaces may be repeatedly used, since the belt remains stationary, and the same portion of the pulley surface is presented once in each revolution; and, further, any desired rate of slipping could be readily obtained. The plan adopted was by no means wholly new, though it possessed some important new features, and was designed without acquaintance with previously used methods. The results thus far attained must be regarded as merely preliminary, and are given simply as suggestive of what a careful study in this direction may develop.

A pulley 13" x 4", mounted on a horizontal shaft, was so arranged that it could be turned at various uniform speeds, giving velocities of its surface of from 0.01 inch to 1000 inches per minute. Over the smooth iron face of the pulley was hung a leather belt, carrying at one end a weight of any amount up to 100 pounds, and secured to the floor at the other end with the intervention of a spring balance reading to 120 pounds. When the pulley was rotated so that its upper surface should turn from the weight towards the balance, the side of the belt carrying the weight corresponded to the tight side of a belt on a driving pulley, the balance side to the slack side. The reading of the balance and of the weight would thus furnish data for computing the coefficient of friction at any desired speed. The rotation of the shaft was automatically recorded.

The numerical results can here be stated only in a general way. With most of the belts used no uniform rate of slip below one inch per min-