We most sincerely hope that the club's invitation may be accepted in the spirit with which it is given; and our neighbors, should they see fit to accept, may rest assured of a most hearty welcome.

Contributions.

"Each Man's Work shall be made Manifest."

JOHN D. RUNKLE, the second president of the Massachusetts Institute of Technology, was born in the town of Root, Montgomery County, in the State of New York, Oct. 11, 1822. His early educational advantages were those furnished by the district school of that period, and like other country boys, he discontinued study in summer as soon as he was old enough to be of use on the farm. At the age of sixteen, he attended a select school for three months, where he began the study of algebra and geometry. For the next ten years his time was spent in farm work, school keeping, and study, when in 1848, by the advice of the late Prof. Benjamin Peirce (under whom he studied mathematics), he entered the Lawrence Scientific School; also devoting some time to the study of astronomy at the Observatory, under Director W. C. Bond. He was appointed to a position on the American Ephemeris and Nautical Almanac in September, 1849, which he still retains; being, since the death of Prof. Peirce, the oldest in length of service on that work. He graduated from the Lawrence Scientific School a Bachelor of Science in 1851, receiving the same year from Harvard College the honorary degree of Master of Arts. In 1855, he published in the "Smithsonian Contributions to Knowledge" a paper of one hundred and twenty-seven quarto pages, entitled "New Tables for determining the Values of the Coefficients in the Perturbative Function of Planetary Motion, which depend upon the Ratio of the Mean Distances." He also established, in 1858, the Mathematical Monthly, which was discontinued at the close of the third year, on account of the breaking out of the civil war.

Prof. Runkle was early interested in the plans for the establishment of the Institute of Technology, and was one of the first teachers in the school, which was held temporarily, during the erection of the present building, in rooms on Summer Street. On the establishment of the school in its new quarters, in the spring of 1865, he was elected professor of mathematics, which position he still holds. In the autumn of 1868, in consequence of the illness of President Rogers, he was elected by the corporation acting president, and president in 1870, which position he resigned in 1878.

During these ten years of service, besides the extension of the quantitative chemical laboratory, the following new departments were established under his direction:

- The physical laboratory in 1869.
- The mining laboratory in 1871.
- The Lowell School of Practical Design in 1872.
- The Dixwell engine and calorimeter in 1874.
- The mineralogical laboratory in 1874.
- The drill hall and gymnasium in 1874.
- The woman's chemical laboratory in 1876, with the co-operation of the Woman's Educational Association.
- The organic chemical laboratory in 1876.
- The mechanic arts shops and School of Mechanic Arts in 1876, by the aid of the Mechanics Charitable Association.
- The biological laboratory in 1877.

In addition to the labor consequent on the introduction and development of these important features, he was called upon to make still more manifest his unusual pluck and energy. The great fire, which dealt such a severe blow to the commercial interests of this city in the autumn of 1872, was followed, as is well known, in the subsequent years by the long and widespread depression in the business of the country at large. The resources of Boston being thus doubly taxed, many of the earnest supporters of the Institute were unable to aid its