then made to the right size by driving in a slender steel punch.

The coil of wire to be drawn is thrown over a reel in a tub containing a thin mixture of rye meal and water. This makes the wire slip more easily through the draw plate, and is said to keep it from rusting. The workmen stand before long benches on which are a great number of cylinders rotated by vertical shafts from below. The workman files the end of the wire to a point, puts it through a hole in the draw plate, and grasps it on the other side with a pair of pincers, which are drawn along by suitable mechanism till enough wire is pulled through to allow it to be attached to one of the revolving cylinders, which afterwards draws it through the hole continuously and coils it up.

As an example of the development of great enterprises from humble beginnings, one of the men said that the wire industry started with "a chunk of iron, a knot-hole, and a mule to haul the wire through!" Possibly this story is not wholly reliable.

Much of the wire made at Washburn & Moen's is what is called "bright finished." This finish is produced by treating the wire with a solution of sulphate of copper, and then drawing it. Tinned wire, such as mattresses are made of, is produced by leading the wire through a bath of melted tin. Before entering the metal bath, the wire is passed between pieces of felt wet with dilute muriatic acid charged with zinc, which gives a clean surface. "Galvanizing," or more properly zinking, is done in a similar way, a bath of melted zinc being used. This wire is used for making barbed fence, for which there is so great a demand that a large building is devoted to its manufacture. It is made by automatic machines, at the rate of about twenty-five tons a day. Another specialty at Washburn & Moen's is the manufacture of ties for hay bales. For this purpose the wire is straightened by stretching it about four feet in one hundred and fifty by a hydraulic press.

For nicer work the wire is straightened perfectly by hammering it on long tables. In the rotary straightener, the wire is drawn through three holes ranged axially along the centre of a cylinder which revolves very rapidly. The middle hole is set a little out of line, thus causing a jerking motion, which takes the kinks out of the wire. A similar principle has been applied on a larger scale to straightening iron bars.

**The 2 G.**

PROBABLY out of all the four classes of the M. I. T. there are not more than a few dozen fellows who know anything whatever about the subject of this article, unless possibly that it is in existence. Before I proceed, let me advise readers not interested in mining to waste no time in reading farther. But I beg the attention of all those who are either interested in or students of mining engineering, while I attempt to gain their interest in the 2 G by the following sketch:

Last year the regular miners of the class of '83, finding themselves well and happily acquainted with each other, and desiring that their friendship should continue fast, not only at the Institute, but in after life; and realizing how pleasurable and profitable such an intimacy would be in future years, which probably would find them scattered to the four points of the compass,—these miners of '83, I say, decided that the best way of preserving their intimacy and promoting their knowledge of—and let us hope thereby the interests of—the mining profession, was to form themselves into a society. This was the origin of the 2 G. Thinking that it might add to the interest and be no detriment to the earnestness of the society, it was decided that certain parts of the formation and transactions should be kept secret. Now allow me to review what I consider the advantages of such a fellowship at the Institute.

At colleges, class feeling is marked, and no wonder; for the men from a class going into the world scatter, as a rule, to various occupations, and, generally speaking, while in college