Hazcn Forecasts Crisis in Engineering Faculty Ranks

by 1967 American colleges will need twice as many engineering teachers as they have today. This year they plan to hire about 1,200 new teachers at a cost of $250,000,000, translating into a salary bill of $70,000,000, or more than today's average; b. This summer, five teaching institutions in the country are at a standstill this day, and 3,500 were donors during the weekend. According to the leader in forming the new center, Jerome J. Wisniewski, professor of Electrical Engineering, "This elaborate system (SAGE) was devised by man, but we still do not fully comprehend how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in- sist in what detail," said Professor Wisniewski. According to Professor Wisniewski, the center would like to find satisfactory solutions to problems such as: The mathematical description of the grammar of a language such as English or Russian. An account of the way man's brain processes the information fed to it by his eyes, ears, nose and other sense organs. "When a system is complex, it is not clear how such a system operates as a whole — how to analyze the information he collects about his environment. The eye, ears, nose and other sense organs gather data and this data is analyzed in the nervous system on a scale enormously more complicated than that of the SAGE system.

We have a good deal of knowledge about how the nervous system behaves, but our knowledge is still far from complete." "No, we do not know how to exploit the potentialities of machines," Professor Wisniewski added. "We build computers which are so big that we can use the answer, but don't think quickly enough to keep up with them. On the other hand, computers are not sufficiently flexible to be useful to them. Have to be told how to solve problems, and that takes a great deal of man's time."

We record generalizations and theories which will account for in-
reviews

Hidden River

This weekend saw the first three performances of the MIT Community Players' production of "The Hidden River" by Ruth and Augustus Goetz in The Little Theatre. Generally known as the MIT Staff Players, the group consists of graduate students, staff employees, and their families.

The play was directed by Preston K. Master, who has directed the past two seasons of the group, notably "The Skin of Our Teeth." John Gilland, Joan Duffield, and Stage Manager respectively.

The Tech TUESDAY, MAY 13, 1958

Page 2

The Tech

VOL. LXXVII
May 13, 1958
No. 24

Books of the Week

MADRIGAL ROLLS

ACT NOW—CLEAR YOUR SHELVES OF ALL YOUR OLD BOOKS.

T.C.A.

A.C.L.

Band Concert

With a cheerful "Good afternoon and welcome to Knege," director John Corley introduced the special Par- ents' Weekend Piano Concert of the MIT Concert Band, but because of unsympathetic winds the band moved to the shelter of the auditorium.

Opening the afternoon's concert with a stirring march "The Southerner" the MIT Band demonstrated itself capa- ble of playing not only a serious program for which it is noted, but also a good old-fashioned Sunday afternoon type band concert—chip, bright, and informal.

Bandmaster Corley noted that the title of "A Colonial Rhapsody," a medley of familiar songs, and followed it with the idyllic "Old Romance" of Morton Gould. The rend- ing of the Gould was disturbingly poor and included, of all things, the opening cymbal crash of another piece. In the Tartsh "Prelude and Rondo" attacks were bad and sections were not together. This was especially noticeable in the Rondo-Polka.

Gathering together loose ends the band now picked up with a brisk and musical interpretation of the great John Philip Sousa's "Manhattan Beach" march.

The second half of the program included Holst's "Second Suite," Moritz Acht's "Queen City of the Lakes," and Gould's "On the Mall."

Morr's march was another indication of the talent with which this young man is endowed, and from whom we all expect many things.

Concluding the afternoon's concert in the typical EdwinFrank goldman manner, Mr. Corley performed the ever popular "On the Mall." Since this march requires audi- ence participation in the trio Mr. Corley first had the audience up with the necessary sing and whistling and he prefaced with this gyp: "you all know the tune and the words are very easy, they're from an old French song and go 'Lu Lu Lu.'"

Band played perfectly, and audience was superb!

THE TECH COOP
PATSIDON REBUILD TOO
3 MONTH FATEMENT PLAN

---3 W.

Straton on Education

In a short address before the participants in Parents' Weekend last Saturday in Knege Auditorium, Julius A. Straton summed up the idea of education and the role of the university in a changing world.

Straton said that there is no perpetual guarantee of a free and prosperous America other than a truly dedicated and educated people. The strength of a nation lies in the ability of the people to meet, overcome, and progress be- yond those inevitable problems that confront a free nation, whether they be a challenge from Russia in the economic and military field or a recession.

It is the role of the university to develop the potential of the individual to play his part in the flux of history; a flux so intense that it has reached explosive proportions in technical and some economic fields. This is education for future progress, it is education for change, something that gives one confidence in an attack on the new and different, and a security to face the future whatever that may be. As Straton pointed out, it is this end of a generation which this young man is endowed, and from whom we all expect many things.

ACT NOW—CLEAR YOUR SHELVES OF ALL
YOUR OLD BOOKS.

Details at Drive Stations:
Building 2, East Campus, Burton, Baker, and Sigma Phi Epulon.

Straton said that in the strength of a nation resides the in- ability of the people to meet, overcome, and progress be- yond those inevitable problems that confront a free nation, whether they be a challenge from Russia in the economic and military field or a recession.

It is the role of the university to develop the potential of the individual to play his part in the flux of history; a flux so intense that it has reached explosive proportions in technical and some economic fields. This is education for future progress, it is education for change, something that gives one confidence in an attack on the new and different, and a security to face the future whatever that may be. As Straton pointed out, it is this end of a generation which this young man is endowed, and from whom we all expect many things.

ACT NOW—CLEAR YOUR SHELVES OF ALL
YOUR OLD BOOKS.

Details at Drive Stations:
Building 2, East Campus, Burton, Baker, and Sigma Phi Epulon.
Tech Sailors Win New Englands Qualify to Enter Nationals in June

The MIT sailors captured the New England championship in a day's sailing at Marblehead yesterday. Their first place team, composed of four sailboats, scored 218 points, while Harvard placed second with 238, and Boston University third at 248.

As a result of their win, the MIT sailors will advance to the national championships, which will be held in late June at the Annapolis Yacht Club. The national championship is the final step in the process of selecting the U.S. team for the international regatta to be held in Italy this summer.

THE ENGINEERS HAVE HAIRY EARS

Today is in age of technology when engineering graduates are needed more than ever before. It is, indeed, a great day for the MIT, Boston University, and Columbia Universities, who have just completed a week of racing on the Charles River.

The MIT varsity won the championship by the largest margin in the history of the race. The team, captained by James Posey '59, scored a total of 199 points. Boston University placed second with 193 points, and Columbia third at 191.

The MIT varsity, led by Posey, won all three of the varsity races. The first race was won by a margin of three lengths over BU, with Columbia in third place. The second race was won by MIT, with BU in second and Columbia in third. The third race was won by MIT, with BU in second and Columbia in third.

The MIT varsity also won the championship in the Lightweight division, with Posey leading the team to victory. The team, captained by James Posey '59, scored a total of 199 points. Boston University placed second with 193 points, and Columbia third at 191.

The MIT varsity, led by Posey, won all three of the Lightweight races. The first race was won by a margin of three lengths over BU, with Columbia in third place. The second race was won by MIT, with BU in second and Columbia in third. The third race was won by MIT, with BU in second and Columbia in third.

The MIT varsity also won the championship in the Lightweight division, with Posey leading the team to victory. The team, captained by James Posey '59, scored a total of 199 points. Boston University placed second with 193 points, and Columbia third at 191.

The MIT varsity, led by Posey, won all three of the Lightweight races. The first race was won by a margin of three lengths over BU, with Columbia in third place. The second race was won by MIT, with BU in second and Columbia in third. The third race was won by MIT, with BU in second and Columbia in third.

THE ARCHITECTS HAVE HAIRY EARS

Today is in age of technology when engineering graduates are needed more than ever before. It is, indeed, a great day for the MIT, Boston University, and Columbia Universities, who have just completed a week of racing on the Charles River.

The MIT varsity won the championship by the largest margin in the history of the race. The team, captained by James Posey '59, scored a total of 199 points. Boston University placed second with 193 points, and Columbia third at 191.

The MIT varsity, led by Posey, won all three of the varsity races. The first race was won by a margin of three lengths over BU, with Columbia in third place. The second race was won by MIT, with BU in second and Columbia in third. The third race was won by MIT, with BU in second and Columbia in third.

The MIT varsity also won the championship in the Lightweight division, with Posey leading the team to victory. The team, captained by James Posey '59, scored a total of 199 points. Boston University placed second with 193 points, and Columbia third at 191.

The MIT varsity, led by Posey, won all three of the Lightweight races. The first race was won by a margin of three lengths over BU, with Columbia in third place. The second race was won by MIT, with BU in second and Columbia in third. The third race was won by MIT, with BU in second and Columbia in third.
- The Crew (Continued from page 3)

- Cheuserfield

- Men of America: On Vacation

- Make Your Selection of Old Spice at

- The Power of Positive Wrinkling

- The Coop

- Stay moosy and firm throughout your shave!