Revised Open House Hours Voted By Dormitory Council After Resident Opinion Poll

The principle topic of discussion, when Dormitory Council met last Monday evening, was the length of the open hours which have recently been distributed among residents, asking their opinions about the new hours. The question was presented to the council by a group of residents who felt that the new hours were too long. The council eventually voted 6-6 to keep the present hours as they are.

Other matters discussed from the discussion of the questionnaire were voted following open house hours, effective immediately:

Monday through Thursday, 2:30 p.m. to 10:00 p.m.

Friday, Saturday, and holidays (excluding the last days of classes), 5:00 p.m. to 10:00 p.m.

Last days of holidays and vacations, 12:00 noon to 2:00 midnight.

It was emphasized at the meeting that responsibility rests upon all dormitory students to use the facilities at the hours they are available.

In considering other business, Dorem- agreed to revise the Dorem Handbook when it was learned that the revi- ed handbook was not being used by the students who live in the dormitories.

When it meets on February 20, the council will discuss the problem of the rights and responsibilities of the students to the physical property of the dormitories.

Course I Exhibit In Building 7 Next Week

The Department of Civil and Sanitary Engineering will present an exhibit titled "Science in Civil Engineering" in the Main Lobby of Building 7 during the week of Feb. 23. The purpose of this exhibit is to inform students, many of whom are faced with the problem of choosing a major, just what Civil Engineers do and what Civil Engineering is. There will be contributions from various divisions of the Department, such as Transportation, Hydraulics, Structures, Building Engineering, Sanitary Engineering, and others.

The exhibit will include a model of a University building, a working model of a heat trap. Also on display will be models illustrating Bridges Vibrations problems, Hydraulics problems, and Soil Stabilization and Foundation Engineering.

Djinn And Bitters '56 Tech Show

The annual musical comedy, will be presented in Kresge Auditorium on March 11, 12, 13. This Tech show, "Djinn and Bitters '56," will be under the auspices of the Kresge show committee.

A native of Forest City, Pennsylvania, Dr. Alexander studied for one week in the Department of Psychology, and in such related fields as business policy and administration. His assignment was announced by Dean C. Richard Soderberg, who stated that Dr. Alexander, the "Mysterious Mr. Smith", who tresided at the meeting, who revealed his identity, Dwight C. Ar- nold, President of the Academic Association, who presided at the meeting, who read a statement from Mr. Sloan:

It has been a privilege for me to share with the other Alumni in making possible this permanent and most fitting memorial to a truly great man, the "Mysterious Mr. Smith", Dr. Arnold.

Djinn and Bitters '56, the annual musical comedy, will be presented in Kresge Auditorium on March 11, 12, 13. First preferences for tickets will go to those registered in Books at first seat. Notices on the bulletin boards or calling Frank Faust, custodian of the student seats will begin Feb. 20.
EDITORIALS
For the Record
Not long ago, Institute Committee asked Activities Council to "obtain a statement regarding the responsibilities to the community of the undergraduate publications as manifested through editorial policy." Here is our statement:

We cannot acknowledge any specific responsibility to any specific group with respect to its protest, but that protest is not in itself, but the evocation of our editorial voice as a corrective force. We do, however, recognize a definite, if intangible one, to the community. This responsibility is our only reason for existence.

To function effectively and meaningfully, we cannot print negative criticism, since we must consider whether we must criticize sensibly. We have no reason to praise what everyone knows is good; we must praise when such praise can bring about the effecting of good. Similarly, we must attack when it will clear the way for virtue which would benefit the Institute community.

All these are matters of our personal judgment, what we feel is right. We can do no more.

Open House Hours

Granted the authority for the first time, Dormcon has published a revised set of Open House Hours. Despite years of student grumbling, not many changes have been made. Inconvenience residents of one of the floors of Burton's 420 hours; but as pointed out earlier, this is not a relevant consideration against extending the weekend one o'clock curfews.

But if Dormcon is still worried about "social acceptability", let them make consistent judgments. Let's have a series of twelve hours every day rather than the ridiculous and confusing twelve to nine, twelve to twelve o'clock, and three to ten on others.

Dormcon, although confused as to which hours are socially acceptable, according to the administration, officially a situation which has long existed—that open house hours are a responsibility of each individual student. It is not for Dormcon to keep track of how many of dorm residents have accepted the hours in the past and will continue to do so. There is, however, a concerned and disillusioned minority who are strongly affected by the rules. Can Dormcon, in all fairness, subject them to rules made without consideration of their situation and then ask them to accept the responsibility that the minorities themselves were often overshadowed by the prudethetics of safe-selling and the crimes of tradition. As a result, the action was received as genuine, but the character portrayed left us cold.

The acting was, on the whole, dead-pan—almost too dead-pan. Sidney Hall, who directed the part for us, Dix Haney, a country yokel who came to the big city to seek his fortune and subsequently buy back his mortgaged home. Only he bought his fortune upon playing the horses. His manner was cost to the point of chill. After receiving a gun-wound that later proved fatal, his only concern was, "What should I do with the money?" No action was more brilliant. In a word, he was a Panch of the first water.

The brains behind the whole production was, however, a Panch of the first water. He was a Panch of the first water, for real live people. Sterling Hayden portrayed the part of a run-of-the-mill professional, with a great deal of authenticity. The brains behind the whole production was, however, a Panch of the first water, for real live people. Sterling Hayden portrayed the part of a run-of-the-mill professional, with a great deal of authenticity. The brains behind the whole production was, however, a Panch of the first water, for real live people. Sterling Hayden portrayed the part of a run-of-the-mill professional, with a great deal of authenticity. The brains behind the whole production was, however, a Panch of the first water, for real live people. Sterling Hayden portrayed the part of a run-of-the-mill professional, with a great deal of authenticity. The brains behind the whole production was, however, a Panch of the first water, for real live people. Sterling Hayden portrayed the part of a run-of-the-mill professional, with a great deal of authenticity. The brains behind the whole production was, however, a Panch of the first water, for real live people.

The plot is essentially the saga of a jewel robbery. It is a plot with a backdrop of those shady habitats of men of crime. Attempts to show the criminals in the light of human understanding are worked in, but not as the central conflict. The conflict is the continuity of the story. The characterization also lacks a depth and suffers from mediocre acting. However, the story is exciting, and those scenes showing the actual robbery had some suspense to them.

The program is currently playing at the Brattle and will run through Saturday.

—Fred Epstein '47
CHORAL SOCIETY

On Monday, February 20, 8:30 p.m. at Kresge, the MIT Choral Society presents a program including Appareil Repentir D'aziz and Ein Deuch Joderz Requiem. Forty-two members of the Boston Symphony will appear. Tickets are available by mail for $2.50 and $1.50 from Room 14-N23.

CATHOLIC CLUB NOTICE

On Feb. 17, 18 and 19, the Technology Catholic Club will hold its annual retreat at the Miramar Retreat House in Duxbury, Mass. Father Joseph Ford will be the retreat master. Anyone interested should contact Rene Union in room 225C, Graduate House.

Reactor Research

(Continued from page 1)

House. The reactor, which will be the first to be constructed in New England, will be used for training students in nuclear engineering and for research in such fields as medical therapy, cold-state physics, sterilization of food, biology, testing of industrial materials, and engineering of future reactors, in addition to its use in the cancer research program.

It will have a power of 1,000 kilowatts, the same as that planned for a reactor being constructed on the campus of the University of Michigan, and it will operate at a temperature of only 144 degrees Fahrenheit—much lower than reactors which produce temperatures of 1,000 degrees Fahrenheit and over—"cool" compared to reactors which produce steam at 2,000 degrees Fahrenheit. It will operate at 1,000 degrees Fahrenheit.

Two distinguished contemporary architects have arrived at the Institute of Architecture and Planning at the Massachusetts Institute of Technology to teach during the 1956 spring term.

Louis I. Kahn, Professor of Architecture at the University of Pennsylvania, and Albert Farwell Bemis, Jr., known for his work with the Museum of Modern Art, New York City, will both give their lecture courses after appearing in exhibitions of contemporary design.

Kahn has designed the Mill Creek Housing Project and Redevelopment Plan, the A. F. of L. Medical Center, and the Philadelphia Psychiatric Hospital in Pennsylvania. He is also architect of the recently completed Yale University Art Gallery.

At MIT Mr. Kahn expects to develop studies of urban design and planning which will show the essential unity between all uses of urban space. He believes that "all problems of civic life leading to building need to be considered as one."

While at MIT as visiting lecturer, Mr. Kaufmann will conduct a series of seminars on the relationship of architecture and design to the ultimate use of space. Architectural looks of architecture but people live in it," Mr. Kaufmann has said. "Making more rooms is a major design problem."

Mr. Kaufmann, who is a native of Pittsburgh, Pennsylvania, has been responsible for many exhibitions of interior furnishings. After studying painting in New York and Europe, he served an apprenticeship with the distinguished architect Frank Lloyd Wright. Mr. Kaufmann has been associated with the Museum of Modern Art since 1935, where he was director of its department of industrial design and since 1945 director of its good design exhibitions. He is author of books on modern furniture and interior design, and he is widely known as a contributor to professional and popular magazines on the subject.

Mr. Kaufmann has been asked to select religious furnishings for the new MIT Chapel.

MIT BRIDGE CLUB

MIT Bridge Club will resume its regular tournament play at the Baker House Dining Room tomorrow at 1:30 p.m. All are invited. Coming up soon are the National Intercollegiate Tournaments opening to all undergraduates and the Club's Invitation Individual Championship.

AIEE-IRE TALK

The Joint Student Branch of the AIEEE will present a talk by Mr. Cyril N. Holler, manager of Technical Relations for RCA, on Tuesday, February 14, at 5:00 p.m. in Kresge Auditorium. The program will include information on recent and interesting demonstrations of recent electronic achievements. Everyone is invited to attend.

Appointments

(Continued from page 1)

The appointment of John W. Sheets, as Executive Secretary for Development at MIT was announced today by Robert M. Kimball, secretary of the Institute.

Mr. Sheets became assistant to the director of Lincoln Laboratory in 1950 and has been at MIT since 1953 as Assistant to the Director, Division of Business Administration, and as Assistant Director of General Services. In his new position he will give his primary attention to annual contributions program and will be responsible for administrative manage ment of the Development Office, where he will work closely with Ralph T. Jope, Assistant Director, and Walter H. Gehr, special assistant.

Two distinguished contemporary architects have arrived at the Institute of Architecture and Planning at the Massachusetts Institute of Technology to teach during the 1956 spring term.

Louis I. Kahn, Professor of Architecture at the University of Pennsylvania, in Albert Farwell Bemis, Jr., known for his work with the Museum of Modern Art, New York City, and with other exhibitions of contemporary design, will be Albert Farwell Bemis Lecturer during the current term.

Both appointments are made possible by funds granted to MIT in 1956 from the Albert Farwell Bemis Charity Trust, established in Mr. Bemis' memory following his death in 1956.

Mr. Kahn, who has a well-known architectural practice in Philadelphia, has designed the Mill Creek Housing Project and Redevelopment Plan, the A. F. of L. Medical Center, and the Philadelphia Psychiatric Hospital in Philadelphia. He was also architect for the recently completed Yale University Art Gallery.

At MIT Mr. Kahn expects to develop studies of urban design and planning which will show the essential unity between all uses of urban space. He believes that "all problems of civic life leading to building need to be considered as one."

While at MIT as visiting lecturer, Mr. Kaufmann will conduct a series of seminars on the relationship of architecture and design to the ultimate use of space. "Architects look at architecture but people live in it," Mr. Kaufmann has said. "Making more rooms is a major design problem."

Mr. Kaufmann, who is a native of Pittsburgh, Pennsylvania, has been responsible for many exhibitions of interior furnishings. After studying painting in New York and Europe, he served an apprenticeship with the distinguished architect Frank Lloyd Wright. Mr. Kaufmann has been associated with the Museum of Modern Art since 1935, where he was director of its department of industrial design and since 1945 director of its good design exhibitions. He is author of books on modern furniture and interior design, and he is widely known as a contributor to professional and popular magazines on the subject.

Mr. Kaufmann has been asked to select religious furnishings for the new MIT Chapel.
Dave McGinnis asks:

Does Du Pont Have Summer Jobs for College Students?

Ivar Lundgaard answers:

Yes, Dave, the Du Pont Company regularly employs students of science and engineering in its Summer Technical Training Program. The chief purpose is to provide good technical training under industrial conditions. And we learn about the students while they learn about us.

Students selected for the program after campus interviews include candidates for the B.S., M.S., and Ph.D. degrees. Assignments are related to their academic interests. Last summer 170 students from 83 institutions participated in the program. In this way, ties are often established which can lead to permanent employment after graduation.

In addition, many other students are hired directly by individual Company units to help out during vacation periods of our regular employees. For this "vacation relief work," assignments are likely to be varied, but these students also gain valuable insights into industrial practice, and many acquire experience related to their fields of study.

Altogether, about 750 college students, from both technical and nontechnical fields and at all levels of study, obtained experience with us during the summer of 1953. So you can readily see, Dave, that the Du Pont Company attaches a lot of importance to summer jobs for college students.

When classes are through
And your girl’s close to you
Here’s a good thing to do—have a CAMEL!

-Man, that’s pure pleasure!

It’s a psychological feat:

Pleasure helps your disposition.

If you’re a smoker, remember—more people get more pure pleasure from CAMELS than from any other cigarette.

No other cigarettes are so rich-smoking, yet so mild!
SAGE - Continental Defense System Developed At MIT's Lincoln Project

The Institute And The Armed Services Team In A Huge Aerial Defense Project; An Integration Of Early Warning And Interception Systems Developed, Using Whirlwind I Type Computers As Information Processing Units

The aerial defense of America involves a variety of high performing defensive weapons like interceptors, ground-to-air guided missiles, and anti-aircraft guns. The assignment and control of these weapons is one of the basic problems of air defense. Continued study and attention to this problem has produced a new system of air defense known as the Air Force SAGE System which provides an effective "counterbalance" to the growing destructive might arrayed against us.

The speed and accuracy with which men can handle the details of identification and interception set a natural limitation to the effectiveness of a manual defense system. How can one overcome this limitation and strengthen our air defenses was one of the most perplexing problems ever faced by those responsible for America's security. To find answers to these problems the Massachusetts Institute of Technology was asked by the three Military Services to establish a new research center known as the Lincoln Laboratory. Here, advancing electronics technology would be applied to all phases of air defense.

The initial work of this new laboratory focused attention on the rapidly developing field of electronic computers, and in particular upon Whirlwind I, the Navy-financed air-purpose digital computer, one of the highest performing computers in existence at that time. This computer very quickly demonstrated its ability to process large quantities of all kinds of air defense data, and to do this with extreme rapidity. In the applications of high speed computers to air defense problems came the part of "air battle" what had long been a barrier to any appreciable growth in our air defense capability, the barrier of information processing. The computer opened the way for centralized air defense handling around which the Air Force SAGE System is built.

Before the introduction of computers, the basic building block of air defense was limited to the coverage of a single radar. The SAGE System enlarges this building block by bringing the area of several radars under the control of a single computer. These radar sites are linked by telephone lines or UHF radio directly to a high speed digital computer. The locations of aircraft anywhere within this entire area are relayed continuously and automatically from the radars. But the information from these ground-based radars is only one piece of the data fed into the computer. Many other sources also supply information to the computer. These include Height Finding, Texas Towers, picket ships, AEW planes, Ground Observer Corps, radar planes and weather satellites.

The computer digests all this information and translates it into a composite picture of the complete air situation. It can superpose displays to show this air situation as it develops and to provide the basis for the human judgments involved in tactical decisions. The computer automatically calculates for the operator the most effective application of such weapons as interceptors, anti-aircraft, Nike and other missiles. Through radio data links, all-weather interceptors and long-range missiles are guided to targets automatically by the computer. As the air battle moves out of the area served by one computer, all information pertaining to each aircraft is transferred automatically to the computer of the adjacent area.

To test this centralized data-processing system the Lincoln Laboratory and the Air Force built in eastern Massachusetts an experimental test network known as the Cape Cod System. A long range radar on Cape Cod was linked to Whirlwind I. Smaller radars for detecting low-flying aircraft were located at strategic positions and also linked to the computer. At Nantucket West End the Lincoln Laboratory, a special test support wing was set up by the Air Force to operate six aircraft. Located at strategic positions and also linked to the computer were the facilities provided by the Naval Air Development Unit at South Weymouth, Massachusetts, which supplies the Naval aircraft that participate in Lincoln's test program. A Direction Center was established next to Whirlwind I in MIT's Banta Building in Cambridge. Here the system was turned on an operational unit. The functions of directing aircraft, identifying them, plotting and predicting their courses are done all-electronically and automatically. Once weapons are committed the system divests them to the targets with a minimum of human intervention. The Cape Cod test network bridged the gap between conception and practice.

Not only was it necessary to evaluate the system as an operational unit, but the special equipment which the SAGE System required was also developed. Whirlwind I, for example, pointed the way to a new computer with greatly increased speed and capacity, and specifically designed for air defense applications.

Meanwhile, at the various Cape Cod radar sites, additional important equipment was evolving. Radar designs were modified and special items of equipment developed for the automatic transmission of radar data. These sites provided a proving ground for new developments. Aeronautics technicians worked with Lincoln engineers in conducting tests on new developments, keeping records of system performance, and installing new experimental equipment sent to the sites for field use and evaluation.

With the successful demonstration of the Cape Cod network, the Air Force was ready to begin a far-reaching revision of its own air defenses. The Western Electronic Company, under Air Force contract, was brought in to engineer and supervise the installation of the SAGE System. This is a task which covers the construction program, and all planning, scheduling and procurement activities involved in bringing the new continental Air Defense network into being.

The International Business Machines Corporation, also under Air Force contract, put into production the first computer specifically designed for Air Defense. These computers, which the Air Force calls the FQF - data processing equipment, are among the largest and most reliable electronic computers yet built. The many thousands of individual elements going into these computers are manufactured and assembled using the latest techniques of the electronics industry.

To supply data to the computer, air defense radars already existing in the field are used. But these are supplemented by unattended low-altitude radars, by other radars and platforms known as Texas Towers by picket ships, farther out to sea, and by round-the-clock patrol of early warning aircraft.

The heart of each operational unit is the direction center -- a windowless, reinforced concrete building which houses a dual channel computer. Only one channel furnishes data at any given time. The other operates on a standby basis. While one channel is working, the other is also receiving data and can take over the full air defense load in a matter of seconds.

The high-performing, large capacity air defense computers together with the radars and other individual components of the SAGE System represent one of the farthest advances yet made in electronics technology. Electronics is helping reduce to a minimum the human effort required for rapid assimilation and processing of information, a human demand of modern air defense. The SAGE System fulfills this demand but it also fulfills a demand of greater significance to our national policy. It demonstrates that machines can do what, machines are helping to overcome: what has long been an imbalance between the increasing "destruction potential" directed against America and our ability to counter it.

The Growth Of Lincoln

MIT Lincoln Laboratory was organized in 1951 in Cambridge, Massachusetts, by the Massachusetts Institute of Technology at the joint request of the U. S. Army, Navy, and Air Force for the primary purpose of mounting an all-out technological attack on some of the problems of continental air defense. The Laboratory is a tricorporate organization (continued on page 6).
ADSEC Recommendation Resulted In Formation Of Project Lincoln

(Continued from page 1)

tion jointly supported by the three Allied Services. The prime contact is with the Air Force through the Air Research and Development Command.

The decision to establish Lincoln Laboratory resulted from and followed closely the report and recommendations of a study of the effectiveness of U.S. defense against air attack, by a special Air Force-sponsored study group known as the Air Defense Systems Engineering Committee ADSEC.

Soviet possession of nuclear weapons and the ability to deliver them to the North American continent rendered the U.S. vulnerable to a land attack for the first time in history. Reassessment of U.S. air defense potential indicated an urgent need for more effective defense.

The ADSEC group, under a wing formed under the name "Project Charles" headed by Dr. F. Wheeler Loomis, an oeuvre from the University of Illinois, who is now chancellor of the University of California, over the first flight of Lincoln Laboratory and was continued after two years by Dr. Albert G. Hill, MIT Professor of physics. Dr. Hill resigned as director last spring.

Several cogent reasons influenced the decision to establish the laboratory and support of a private university in the creation of necessary laboratory facilities rather than to attempt the establishment of a new laboratory within the military structure in times of possible war. The performance record of such laboratories during World War II was impressive and the freedom and objectivity of an established scientific community with academic standing would enhance the effectiveness of the effort. The possibility of providing top level scientists with greater tangible and intangible satisfactions would be increased.

Checha And Balances

Lincoln Laboratory is managed by members of MIT’s faculty, liaison to the Institute maintained through Ad-\nal Edward J. Cochrane (Ret.) Vice-President for Indus-\try and Government Relations. Close relationship with the armed services at both the policy and working levels are maintained by a Joint Services Advisory Committee and by permanent liaison at Lincoln of each service.

Support and close working liaison between Lincoln and the Air Force is provided by resident units of the Air Re-\search and Development Command and the Air Defense Command at the Research Center, one of nine major research centers scattered throughout the United States and operated by the Air Research and De-\velopment Command, technical liaison, contract administration, and Air Force logistical support including that required for system-wide testing. Lt. Colonel R. S. La-\rner, who is in charge of the AFRDC Lincoln Project Office, and Captain H. E. Spangler is Contract Administra-\tor Office.

The Limits Of Research

The largest current project is research and development of the Semi-Automatic Ground Environment (SAGE) Sys-\tem of air defense. The SAGE system is a network of digital-computer-equipped direction centers with interconnec-
tions by high-speed telephone lines giving central computer control of radar over hundreds of miles and other information, and generating battle orders to de-\fense weapons.

One of the last major projects at Lincoln grew out of one of these projects and is being developed for the Distinct Early Warning (DEW) line of radars and communication circuits across the northern part of the continent. This project is now in the installation stage.

The Developing of the ionospheric and tropospheric scatters of long-range radio communications, following fundamental work in physics and engineering, is another Lincoln Project. This system provides for unique high-fidelity communication of extremely high reliability.

A general listing of specific kinds of research and development at Lincoln would include digital data transmission, solid-state physics including both transistors and mag-\netic ferrites for digital computer and radar applications, improved ground and airborne radars, long-range radio communications, high-speed data transmission systems, theory of sample data systems, psychological research on train-\ing and operator relationships to equipment and systems analysis, simulation, and evaluation.

The Facilities

Facilities at Lincoln and its affiliated MIT Barts Building in Cambridge include a semiconductor physics laboratory, physical chemistry laboratory, meteorological studies, radar research in the laboratory, low temperature research facilities, a mechanical engineering group specializing in structures, electronic-mechanical design and development, vacuum and radiation instrumentation, laboratories, low temperature research facilities, microwave re-\search facilities, three large-scale digital computers, exten-\sive data storage facilities, and a photographic laboratory.

The Administrators

Dr. Marshall G. Hollaway, Director

Dr. Hollaway became Director of MIT Lincoln Laborato-\ry in May 1955. He is a Professor at MIT. He came from the Los Alamos Scientific Laboratory in New Mexico, which he had served since 1945. He had been actively engaged in nuclear scientific problems, including the development of atomic weapons, and in the development and production of theoretical work. He has recently served in Washington on an advisory committee for the Director of Defense Mobilization.

Dr. Hollaway was graduated in 1953 from the University of Florida. He took his degree of master of science in 1953 and the degree of doctor of philosophy in physics in 1954 at Cornell University. He taught at the Institute of Technology in New York City, and at Dartmouth, and at the University of California, at Berkeley, and at the University of Illinois, where he had been a professor of physics and in the Los Alamos Scientific Laboratory.

Dr. George E. Valley, Jr., Associate Director

Dr. Valley, Associate Director of the Laboratory since November 1955, has been a professor of physics at the University of Chicago since 1950. He was awarded the National Research Fellowship (1940-41) in 1941. Dr. Valley joined the staff of MIT’s Radiation Laboratory as a Research Associate professor of physics at MIT in 1949 and associate professor in 1949, where he has specialized in nuclear physics and cosmic radiation. Dr. Valley was a member of the Scientific Advisory Board to the Chief of Staff, U. S. Department of the Air Force from 1946 to 1956 and was chairman of the Electronics Panel, 1950-1956. In 1948 he was awarded the Presi-\dent’s Certificate of Merit, the na-\tion’s second highest civilian award. In 1951 he received the Annual Award of the Air Force Association.
Ernsberg Sparks Millrose Relay Win

Running in the annual Boston Athletic Association invitational meet on Saturday, January 21, the Beaver indoor relay team capped two third places in their mile and two mile relay heats. The mile team's bid for a first in the Boston Sprint event was ended by a dropped baton, making the third place showing all the more surprising.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut and Northeastern, and at the final passing green led the Huskies in second holding a slight lead on the Terricks. Another man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, Pete Carberry '57, Dave Vaughan '57, and Carter.

Mile Relay Strong

In the mile relay, the Tech team of Nestor Ernsberger, Bill Duffy, Ed Hill, and Dick Moroch, all sophomore, gave highly rated, but when the baton was dropped on the second pass, the team was dropped to fourth place. Only a terrific last lap by Moroch enabled the Beavers up into third.

The mile team reached its peak of the season thus far the following weekend in the annual Mile Millrose games in Madison Square Garden in New York. With Ernsberger opening a lead in the first lap, the Cardinal and Grey runners stayed ahead of the field all the way to win with a time of 3:56.9. The rest of the heat was made up of University of Providence, Conn., and Adelphi.

Baker Memorial Prints

Students interested in securing a Baker Print for the Spring Semester should drop in at the TCA office before Feb. 14.

Hoop, Rink, Squash Teams Resume Action

Traditionally strong Princeton will provide the opposition for the Beaver squash team when they return to action in a home meet at 2:00 on Saturday. Last year's Princeton team was one of the strongest in the country, but loss of Roger Campbell, their number one man and two intercollegiate champion, has weakened their team somewhat. The Engineer team has been hurt by the loss of their number three man, Walter Stahl '58, a three-year veteran and number three man for two years, who dropped out at midway. The home team should be very strong in their top men and depth will probably decide the match.

Coach Scotty Whitlock's varsity battery got back into action Saturday night in the cage so far only in spots. Little basketeers get back into action the brand of hockey they have seen so far only in spots. Little basketeers get back into action the brand of hockey they have seen so far only in spots. Little basketeers get back into action the brand of hockey they have seen so far only in spots.

Ski Team Wins Top Championship Honors, Takes William Henry Memorial Trophy

Led by Dick Schwaegler and Serge Backe the MIT ski team ran off with two trophies over the past vacation, taking the William Henry Memorial Trophy, and first place in Class F of the Eastern Intercollegiate Skiing Association Championship.

At Franconia, N. H. in the Memorial, Schwaegler took second in the slalom, and Bob Kersey '57 of the Betas shared the hot seat third, with 24 points, only 15 points better than the runner-up, the Graduate's Bill Constanakes. Backe, a native of Hoboken, New Jersey, the Techmen will surely miss the services of 6'4" center Norm Howard who dropped out at mid-year. After their defeat at the hands of North-eastern during reading period, the Beavers are in need of a win, and with a week's rest and a weak of hard practice behind them, they should be a slight favorite.

With a disappointing two and six list round under their belts, the MIT puddlers travel South this weekend to meet a strong Princeton team Friday and Lehigh on Saturday.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut anchor man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, J. Hill, and Bob Kersey '57 of the Betas shared the hot seat third.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut anchor man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, J. Hill, and Bob Kersey '57 of the Betas shared the hot seat third.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut anchor man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, J. Hill, and Bob Kersey '57 of the Betas shared the hot seat third.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut anchor man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, J. Hill, and Bob Kersey '57 of the Betas shared the hot seat third.

In the two mile relay, coach Oscar Hedlund's speedsters fought it out all the way with University of Connecticut anchor man Ed Carter '58, nearly closed the gap all the way but Northeastern was given the red for second place by the judges as both teams were timed at 9:08.4. Union won with a time of 8:58.9. Running for the Beavers in this event were Glenn Bennett '58, J. Hill, and Bob Kersey '57 of the Betas shared the hot seat third.
Varsity Hockeymen Lose To Bowdoin

Playing on the first day of Reading Period, the MIT hockey team suffered its sixth loss of the season, bowing to Bowdoin 4-2. The game, played after two postponements due to bad weather, was marked by hard, aggressive play on both sides.

The Martinvillians got off to a flying start with Ross Goodwin opening the scoring after only 22 seconds elapsed. Goodwin stole a pass in front of the nets, had one shot kicked out to the right where Jim Coult '56 picked it up and then scored on a pass from Dave Haml. The Blackbirds defensemen George Crane hit from right in front on a pass from Dave Hamil. The Blackbirds and White followed this up with another goal at 17:40 and left the ice with a 2-1 lead at the close of the first period. vantage.

The second period was slow and sloppy with Bowdoin getting the only goal midway in the period on a breakaway. The Bean-Beavers started off the third period just as they had the first and cut the lead 2-0 on a goal by Paul Skala '56. Taking a pass past Goalie Durwood, Skala's shot from fifteen feet outskirted the prune goalie and resulted in the upper part of the nets. Bowdoin brunt right back and scored at 10:36 as they had before, with Alpine stopping one hard shot and then not having a chance on the follow-up.

Play from here on in was hard with Bowdoin's 6-4 defensemen throwing their weight around to good advantage.

Summer Session (Continued from page 1)

"Molecular Engineering"—a new approach to engineering problems in which new materials are derived from the basic building blocks of atoms and molecules to fit the specifications for special purposes.

"The Artist, Materials and Technology"—new materials available to architects, model makers, and planners—plastics, metals, enamels, glass, laminates, etc.—are without precedent and have potential values in strength, color, and surfaces which are not yet realized.

Other topics in the series include structural design, industrial wastes, vibration, lubrication, heat transfer, creative engineering and project design, control systems engineering, fluid power control, textile technology, iron and steel making, X-ray diffraction, ceramics, city and regional planning, instrumental chemical analysis, communications, digital coding and decoding, switching circuits, research methods in biology and medicine, science teaching in secondary school, ship propulsion, electronic computers in business, operations research, dynamic measurements, plastics in building, hydrodynamie, and food technology.

Extensive work in various laboratories at the Institute will be a feature of most of the programs. Participants will use one such advanced equipment as the Whirwind computer, cyclotrons, synchrotrons, ship model towing tank, underwater propeller tunnel, supersonic wind tunnel, plastics research laboratory, and radar meteorology laboratory.

"This series," according to Professor Houtson, "is especially designed for professional people not regularly associated with MIT. We seek to help these people refresh and enlarge their knowledge and extend their mastery in professional fields in which the Institute is pre-eminent."

Members of these programs may live in MIT dormitories and will have available all of the cultural and recreational facilities of the MIT campus. Additional special events open to members of all programs are planned throughout the summer season from Monday, June 18 through Friday, August 31.

Further information about summer activities at the Institute is available from the Summer Session Office, Room 1-139, Massachusetts Institute of Technology, Cambridge 39.
BATON SOCIETY
presents the fifth annual
NEW ENGLAND
INTER-COLLEGIATE BAND

THOR JOHNSON, conductor
(music director, Cincinnati Symphony Orchestra)

and featuring DAVID BAR-ILLAN,
brilliant young Israeli pianist
in Robt. Starer: Concerto for Piano and Band (world premiere)
also—Miaskovsky: Symphony No. 19 (for band)
Vaughan-Williams: Toccata Marziale

KRESGE AUDITORIUM
Sunday (February 12) - 3:00 p.m.
Reserved seats $1.75, Unreserved seats $1.25
Tickets at door

Poor old mangy Sheedy was hounded by a lack of confidence! Every girl
he talked to told him he was barking up the wrong tree. "Fido's get a
data pretty soon," he howled, "I'm gonna flea the campus and go home
and mutter." Then he got wise to Wildroot Cream-Oil.
Now he has confidence in any situation because
he nose his hair looks healthy and handsome, the way
Nature intended... neat but not greasy. Contains the
heart of Lanolin, the very best part of Nature's finest hair
and scalp conditioner. Get yourself a bottle or tube of
Wildroot Cream-Oil, America's biggest selling hair tonic.
It gives you the confidence you need to be a gay dog.

Wildroot Cream-Oil
gives you confidence!
Wildroot Company, Inc., Buffalo 11, N. Y.

Thank a new recipe for the man-size flavor.
It comes full through the filter with an easy draw.
Thank the Flip-Top Box for the neatest cigarette package
you ever put in your pocket or purse. Popular filter price.
STRING QUARTET

The Juliard String Quartet will play in Kresge Auditorium at 3:00 p.m. on Sunday, Feb. 19. The program will be as follows: Haydn, Quartet Opus 64, No. 3 (The Lark); Bartók, Fifth Quartet; Beethoven, Quartet Opus 59, No. 3.

INFORMAL DANCE COMMITTEE

The Informal Dance Committee of the Walker Memorial student staff will present their first dance of the term in Mars Hall at 8:00 p.m. on Saturday, February 18. The admission price will be $1.00 per couple.

ACQUAINTANCE DANCE

An acquaintance dance will be held in Mars Hall, Friday night, Feb. 17, from 8 to 12. Don Edwards will head a five-piece band and refreshments will be served during intermission. Girls will attend from Lasell, Radcliffe, Simmons, BU, and all the smaller schools around Boston. Announcements have also been sent to the nurses' homes of the larger hospitals. Cost is one dollar.

ORSON WELLS’ production of WILLIAM SHAKESPEARE’S

OTHELLO

Special Student Discounts

BEACON HILL THEATER

1. SUPERIOR TASTE

So good to your taste because of superior sediment. Richer, tastier—especially suited for filter smoking. For the flavor you want, here's the filter you need.

2. SUPERIOR FILTER

So quick on the draw! Yes, the flavor comes clean—through LM's exclusive Miracle Tip. Pure white inside, pure white outside, as a filter should be for cleaner, better smoking.

LINDE

MOLECULAR SIEVES
FLAME-PLATING
SILICONES
LIQUID ARGON
JET-PIERCING
HELIARC-CUTTING
STAR SAPPHIRES

These are just SOME of our products and processes!

Take a few minutes to find out about the career we might have for you in:

RESEARCH - DESIGN - DEVELOPMENT
GAS PLANT OPERATION - MANUFACTURING
SILICONES PRODUCTION
SALES and ENGINEERING SERVICE

CAMPUS INTERVIEWS FEBRUARY 15-16, 1956
LINDE AIR PRODUCTS COMPANY
a Division of
UNION CARBIDE and CARBON CORP.

ENGINEERS

CHOOSE YOUR CLIMATE
CHOOSE YOUR JOB

with

THE GARRETT CORPORATION
at
AirResearch Manufacturing Division,
Los Angeles, California
Aero Engineering Division,
Mesa, Long Island, New York
AirResearch Manufacturing Division,
Phoenix, Arizona
Air Supply Division, Beverly Hills, California
AirResearch Industrial Division,
Los Angeles, California
Air Cruisers Division, Bel Mar, New Jersey
Rex Division, Los Angeles, California

* * *

On campus for interviews
Thursday, February 16, 1956

* * *

B.S., M.S., and Ph.D. candidates in Mechanical, Aeronautical, Electrical and Electronic Engineering, Physics and Mathematics may schedule interview appointments through your placement office.