Engineer Crews To Race in Eastern Intercollegiates

By J. Reed Margulis '54

With increasingly better times than they have previously shown, the Beaver Nine have won the Silver Platter given by the National Collegiate Baseball Foundation. Their championship win will be marked by a $1000 donation to the Institute's need fund. The Beaver Nine will race against Boston University and the University of Pennsylvania on April 21 and 22.

The Beaver Nine, who won the championship, have won their last 17 games and have only one loss this season. Their first victory over Boston University, 9-0, was marked by a strong performance from the Beaver Nine's starting pitcher, John W. Brown '55. The Beaver Nine's strong performance was followed by a consistent defense throughout the game, which led to their victory.

The Beaver Nine's next game will be against the University of Pennsylvania on April 22. The game will be held at 2:00 p.m. at the Institute's baseball field. The game is expected to be a close one, with both teams showing excellent performance. The Beaver Nine, with their strong defense and consistent pitching, are expected to come out on top.

All Institute ROTC Units Parade In Observance of Military Day

A parade of all the Institute's ROTC units before distinguished military and civilian guests yesterday afternoon on Briggs Field included the Signal Corps, the Engineers, the Independents, and the Cadets. The parade was a part of the Institute's observance of Military Day, which is held each year to honor the men and women who have served in the military.

The parade was led by the Signal Corps, followed by the Engineers, the Independents, and the Cadets. The parade was held in front of the Institute's main building, with the cadets in the front and the cadets in the back. The parade was followed by a reception at the Institute's dining hall, where the guests were able to speak with the cadets and learn more about their experiences in the military.

In addition to the ROTC units, the parade also included a float from the Institute's engineering society, the Sigma Alpha Epsilon. The float was decorated with decorations and signs, and was accompanied by a group of cadets who sang songs about their experiences in the military.

The parade was a success, with guests and cadets alike enjoying the experience. The parade was held in front of the Institute's main building, with the cadets in the front and the cadets in the back. The parade was followed by a reception at the Institute's dining hall, where the guests were able to speak with the cadets and learn more about their experiences in the military.

The parade was a success, with guests and cadets alike enjoying the experience. The parade was held in front of the Institute's main building, with the cadets in the front and the cadets in the back. The parade was followed by a reception at the Institute's dining hall, where the guests were able to speak with the cadets and learn more about their experiences in the military.
Ordinary Hen's Egg Plays Vital Role in Fighting Virus Diseases

The ordinary hen's egg, as popular literature might have it, don't play a role in fighting virus diseases. But a skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion. The eggs are then placed in a huge beehive and the virus allowed to multiply. Before hatching, the shells are tapped and the tissues removed. From these the virions are made. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

Many researchers believe that the egg is one of the best tools ever devised for growing modified viruses—and many feel confident that all forms of virus strains will be adapted to the use of men's continuing effort to "solve" deadly viruses which can't be forced. The egg is being forced to do its part. The simple procedure is this:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

This simple procedure is the key to fighting virus diseases. The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

This simple procedure is the key to fighting virus diseases. The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

This simple procedure is the key to fighting virus diseases. The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

This simple procedure is the key to fighting virus diseases. The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.

The egg is being forced to do its part. The simple procedure is:

1. A skilled worker uses a device that will make a tiny hole in the shell of the fertile egg, taking care not to break the membrane.
2. Through this opening, some of the live virus is injected with a needle, and the hole is immediately sealed with collodion.
3. The eggs are then placed in a huge beehive and the virus allowed to multiply.
4. Before hatching, the shells are tapped and the tissues removed. From these the virions are made.
5. It's a long and tedious process, but each one of the millions of eggs used every year has been handled individually.
I previous playing experience. This means physical condition so as to avoid the fold in as much as not only does the coach a team. and football background needed to good a student coach is (last year players wvho never come to practice 'than to warrant its continuance under Under this new system, it wvould be dangerous to those who par- the present hit or miss manner and, this feeling is due to schools like. equipment to replace the sub-par an ever increasing belief that the sport is unsafe and therefore the popularity of football in the public eye. Just as in boxing, there is the freshman teams on a freshman best remedy of the situation would be given. () one, ([Continued on Page 4])

THE TECH - WALKER MEMORIAL

Enclosed find. Please send THE TECH for
one. [] two years starting with the Fall Term, 1953 to:
Name
Address

Rates: One year, $2.50; Two years, $4.50.

Martinson Bow To N. Hampshire Fresh WhipDean

Fulfilling in the second half, the Beaver Laureate team lost to the University of New Hampshire for the second time this year, 7-4. The loss was the sixth in seven games for the Cardinal and Grey.

The first half was well-played, and the Engineers were in contention throughout the half. As early goal by Gordon J. Coombs '54 gave the Techmen their only score of the half, but only two Wildcat shots past goalie Joseph F. Born '54. The next two periods were a different story, however, as New Ham- pshire stars Lohfend and Hant went to work, scoring five times between them during the game. The Beavers scored twice in the third period and twice in the last quarter, but New Hampshire tallied once more than Tech in each period. One thing of note in the game was the fact that Tech received only three penalties during the whole game.

The score by periods: New Hampshire 1 1 3 2 - 7 M.I.T. 0 0 1 5 - 4

The freshman team is contrast to the varsity, was a game, after those consecutive losses, defeating Dean Academy. In this game, Hannon Carroll scored both goals to bring his total for the season to four. The game was marred by a number of near-fights, and a large number of penalties (17) on the prep- schoolers.
Military Day (Continued from page 1)

for the air force cadets was awarded to Cadet Technical Sergeant Anthony Tarzian '54.

The MIT Professor of Air Science and Tactical Service Medal was awarded to Cadet Major Thyes '51. The same medal for Juniors was awarded to Cadet Master Sergeant Richard H. Murphy '54. The Sophomore Air Science Medal was awarded to Cadet Airman Second Class Prudence F. Finster '56. The Freshmen Air Science Medal is, not the important factor, but rather publicity for the Institute in its Air Force field. It is not being claimed that the student body, a system could be set up whereby an experienced faculty coach can be assigned to "assist" with the management of the squads.

Publicity or Participation? When one high official in the Athletic Association was approached with the idea of freshman football, he stated that the Institute would not spend the money for the necessary equipment and good coaching, mainly because it is on the intercollegiate level.

Athletic Award As mentioned before in THE TECH, the Freshmen Air Force Scabbard and Blade Medals were awarded to Cadet Technical Sergeant Paul Drumth '54. The Freshman Air Force Robinson and Elise Medals were awarded to Cadet Charles Diamond, John McCaughlin, Russell Scherbakut, and David Shee. The Freshman Air Force Robinson and Elise Medals were awarded to Cadet Frederick Barks. This was no spot to be wearing a dress shirt, I decided, so I whipped off my tie, opened my collar, and presto!—my Van Duval because the best-looking, most comfortable sport shirt on campus. Maybe I was right after all.

"But what about the lions," asked the Dean.
"Well, all of a sudden," continued Charlie, "this frightening figure clattered down the steps of the old world building and started belly dancing in the middle of the room. This was no spot to be wearing a dress shirt, I decided, so I whipped off my tie, opened my collar, and presto!—my Van Duval because the best-looking, most comfortable sport shirt on campus. Maybe I was right after all.

"Yes," said the Dean.
"But what about the lions?"
"What about the lions?"

"What are the lions?"
"What are the lions?"

Athletic Award (Continued from page 2)

Boylston Street

WANTED

$1000 EASY TECH AGENT WANTED

We are looking for an agent to sell nationally advertised drawing instrument sets to entering freshmen this fall. Write Sales Mgr., Empire Engineering Supply Co., P. O. Box 114, Canal St. Station, N. Y. C. 13, N. Y.

SUMMER EMPLOYMENT

We can offer again students pleasant, congenial, remunerative outside work in our sales department. If accepted, we will train and guarantee you $55.00 weekly while learning. After the training period, we find that our salesman can equal the average earning of $80.00 to $125.00 weekly established by other college employees. A personal interview will be arranged at your convenience.

WRITE

Catholic Home Messenger

100 Boylston Street
Boston, Mass.

Phone: Mr. Scribner
W A terhen 4710
bpt. 4:30 and 6:00 P.M.

CHEVROLET is lowest priced! It brings you more new features, more fine-car advantages, more real quality for your money... and it's America's lowest-priced full-size car!

Further ahead than ever in quality... yet the lowest-priced full-size car... we've sharply greater economy of operation!

Imaginative—the most distinctive car in its field, with new Fashion-First Bodies by Fisher that set the standard of styling, unexcelled. The most powerful car... with your choice of a new 155-h.p. "Blue-Flame" high-compression engine or greatly improved 106-h.p. "Thrift-King" high-compression engine.

Yet, with all these new and exclusive advantages, there is no increase in Chevrolet prices, and it remains the lowest-priced line in its field!

Who, indeed, only Chevrolet gives such excellence with such economy. Come in and prove it at your earliest convenience.

"Contribution of nationwide automatic transmission and 155-h.p. "Blue-Flame" engine optional on Bel Air and "Two-Ten" models at extra cost."

Announced by the "Two-Ten" 4-door Sedan. At $125.00. 1953.

24 beautiful models in 3 great new cars.

MARCH TO YOUR CHEVROLET DEALER FOR YOUR SUMMER EMPLOYMENT OPPORTUNITY!