ACCEPTANCE

Cambridge, MA January 19, 2012

The NSTAR ELECTRIC COMPANY hereby accepts the order of the Pole and Conduit Commission of the City of Cambridge adopted on June 16th, 2011

and approved by the City Manager on January 19, 2012 granting:

As follows:

NSTAR Electric Company’s “NSTAR North Cambridge to Putnam Cooling Return Line Project (Substation 509 to Substation 831, Cambridge MA) in Cambridge streets.

NSTAR ELECTRIC COMPANY

By: __________________________

Jack, Goggin Project Manager

Decision: voted 2-0 to approve. George has license agreement detailing all conditions from electrical and DPW. He will submit to the Commission.

[Signature]
I HEREBY CERTIFY that the foregoing order was adopted by the Pole and Conduit Commission of the City of Cambridge, Massachusetts at a meeting of said Commission held on the 16th day of June A. D. 2011, and that said order was approved by the City Manager on the 19th day of January A. D. 2012.

Attest:

[Signature]
Clerk of the Pole and Conduit Commission

WE FURTHER CERTIFY that said order was adopted after due notice and a public hearing thereon, as prescribed by General laws, Chapter 166 Section 22; that said hearing was held by the Pole and Conduit Commission aforesaid on the 16th day of June A. D. 2011, and written notice of the time and place of said hearing, was mailed at least seven days prior to the date of said hearing, to wit: on the 16th of June A. D. 2011, by the Clerk of the Commission, to all owners of real estate abutting on that part of the Street upon, along, across or under which the line is to be constructed according to the locations granted by said order, as such ownership is determined by the last preceding assessment for taxation, the names of such owners being stated in the copy of notice for hearing filed with the petition of said Company in the office of said Pole and Conduit Commission.

Attest:

[Signature]
Clerk of the Pole and Conduit Commission

City of Cambridge
MASSACHUSETTS

Office of Pole and Conduit Commission

Received and entered in Records of Poles, Wires and Conduits of the City of Cambridge, Massachusetts in Book 72, Page 453-54

Attest:

[Signature]
Clerk of Pole and Conduit Commission
Cambridge, Massachusetts

A true copy

Attest

[Signature]
Clerk of Pole and Conduit Commission
June 2, 2011

Mr. George Fernandez,
Mr. William Dwyer
Ms. Elizabeth Lint
Cambridge Pole and Conduit Commission
831 Massachusetts Avenue
Cambridge, MA 02139

RE: NSTAR North Cambridge to Putnam Cooling Return Line Project (Substation 509 to Substation 831, Cambridge MA)

Mr. Fernandez, Mr. Dwyer, and Ms. Lint:

NSTAR Electric Company (“NSTAR”) has identified potential electric transmission reliability concerns with respect to its existing 115kV underground transmission lines identified as Line 831-536 and Line 831-537 in the City of Cambridge (“City”). These transmission lines support NSTAR’s Putnam Avenue and East Cambridge substations and run radially from NSTAR’s North Cambridge substation near the Alewife train station. To increase transmission capacity and reliability and meet future transmission demand for the City of Cambridge, NSTAR is planning to install two (2) heat exchangers, one at Substation 831 on Putnam Avenue (or “Putnam Avenue Substation”) and one at Substation 509 on Alewife Brook Parkway (or “North Cambridge Substation”), and to install approximately 3.6 miles of 8-inch-diameter cooling return pipeline to connect the two new heat exchangers through an interconnect mid-point location on Chauncy Street. The Cambridge Board of Zoning Appeals recently granted special permits for the two new heat exchangers at the two substations, and those special permits have been recorded at the Registry of Deeds.

The North Cambridge to Putnam Cooling Return Line Project (or “Project”) will enhance the reliability and efficiency of NSTAR’s transmission lines that supply almost all of NSTAR’s electric load in Cambridge east of Harvard Square. Specifically, the Project will facilitate the continued circulation of dielectric fluid in the event that one of the existing two pipe-type 115 kV electric transmission cable lines goes out of service to provide increased transmission capacity to the City. Please find enclosed the following Pole & Conduit Commission forms and NSTAR’s proposed pipeline route map and 1:200 scale plans, dated May 20, 2011.

Project Background

The existing 115 kV underground transmission cable lines, which were installed in 1988, consist of two circuits with three copper cables in an 8 5/8 in steel pipe surrounded by dielectric fluid. The existing pipe-type cable pipes are installed 24-inches on center within a concrete encasement that is 40 inches wide by 24 inches deep around the two pipes. The depth from the surface to the center of each pipe-type cable is approximately 38 inches (see Figures 2 and 3 – Typical Trench...
Proposed Cooling Return Line Route Design

NSTAR conducted a systematic and objective route study that investigated the feasibility of locating the cooling return pipeline parallel to the existing 115kV pipe-type cable, and the feasibility of a principal alternative route. Within the context of these two alternatives, NSTAR investigated a number of route or road options to accommodate several key design requirements of the project and the considerations put forth by City representatives, including:

- NSTAR’s design requirement to establish a system “midpoint” connection on Chauncy Street;
- the cooling requirements to address contingencies with the existing 115kV cables;
- existing utilities in the roads;
- road configuration and traffic management;
- residential and commercial use along the routes;
- current and future City combined sewer system projects;
- current and future City road restoration and pavement projects;

Table 1 lists the principal segments and options investigated by NSTAR.

In the route alternative analysis process, and in consultation with representatives from the Pole and Conduit (“P&C”) Commission and the Department of Public Works (“DPW”) engineering staff, the route was divided into four segments with multiple options for each segment. The four segments and the options for each segment are shown in Table 1. The proposed route shown on Figure 1 offers the route that best meets the design requirements for delivering reliable electric power to the City, while minimizing to the extent feasible the temporary effects of construction on the City streets and sewer projects, residential and commercial traffic, and providing safe and practical co-location of the pipeline in the streets with existing electric, water and sewer, and communication cables.

| Table 1 |
| NSTAR Cooling Return Pipeline Route Alternatives |

- **Segment 1** – N. Cambridge Substation to Soazio Rotary
 - Option 1 – Existing Route (Alewife Brook Parkway)
 - Option 2 – Wheeler St to Alewife Brook Parkway
 - Option 3 – Fresh Pond Shopping Center/New St.
- **Segment 2** – Soazio Rotary to the mid-point (Chauncy Street)
 - Option 1 – Existing Route (Garden Street)
 - Option 2 – Concord Ave
- **Segment 3** – Chauncy Street to DeWolfe St & Mt. Auburn
 - Option 1 – Existing Route (Chauncey, Oxford, Quincy)
 - Option 2 – Garden St/Mason St/Brattle St/Story St/Mt Auburn St
 - Option 3 – Garden St/Hawthorne St/Memorial Drive
 - Option 4 – Cambridge St/Waterhouse St/Mass Ave/Quincy St/Mass Ave
 - Option 5 – Garden St/Mass Ave/Linden St/Mt Auburn St
- **Segment 4** – DeWolfe St & Mt. Auburn to Putnam Substation
 - Option 1 – Existing Route (Mt Auburn, Banks, Putnam)
 - Option 1A – Existing Route with Flagg St
 - Option 2 – DeWolfe St/Memorial Drive/Pleasant St
Pipeline Construction Sequence

There are generally three principal phases of construction that involve different activity and construction requirements with the proposed Project. These phases include: pipeline construction, fluid filling, and roadway restoration. The Project consists of a number of pre-construction and construction sequential elements along the proposed route that will involve diligent coordination with the City, local residents and commercial establishments and Harvard University. These elements include: survey confirmation and soil testing; marking the existing underground utilities and structures; set-up and trench operations to install the steel-pipe: backfill, grade restoration and temporary patch pavement, and final street repaving. These phases are described in more detail as follows.

Pipe Installation

Steel pipe installation requires a series of construction activities performed in a single work zone. The activities include saw cutting the pavement, breaking and removing the pavement, excavating and removing the soil, installing the pipe, backfilling the trench, and repaving the work area.

The width of the trench is marked on the street and the pavement is saw cut. The saw cutting provides a clean break in the pavement and defines the trench for the next activity. Saw cutting is a relatively fast operation and is not performed every day. Saw cutting proceeds a certain distance ahead of the installation crew, and this activity is suspended until the trench work catches up.

The existing pavement is removed by pneumatic hammers and loaded into a dump truck by a backhoe. Pavement is handled separately from the soil so that the pavement can be recycled at an asphalt batching plant. The trench is then excavated to the required depth by a backhoe. As shown in Figures 2 and 3, the standard trench will be approximately 2-4 feet wide by 4 feet deep. In some areas, some of the excavation will be done by hand so as to avoid disturbing existing utility lines or service connections. The soil is loaded directly into a dump truck for off-site recycling or disposal. The soil will not be stockpiled on site. This will limit the size of the required work area and the potential for sedimentation and nuisance dust generation. The trench is shored and sheeted as required by soil conditions and Occupational Safety & Health Administration (OSHA) safety rules.

The shoring is designed to accommodate traffic adjacent to the trench and specifies for the trench to be covered with a steel plate to allow traffic over the trench during non-working hours. Under typical conditions, a crew will excavate and shore approximately 80 to 100 feet of trench per day depending on site conditions.

Once approximately 200 feet of shored trench is prepared, pipe installation will begin. This length of trench is required to install 40-foot steel pipe sections and still be able to maneuver the
pipe to avoid underground obstructions. Street intersections create challenges for pipe installation, since they have the greatest concentration of underground utilities. Usually a crew excavates the street intersection in advance of the normal work zone so that the obstructions can be precisely identified and the pipe location determined before the main work crew reaches the intersection.

The pipe is delivered to the site, as needed, on a flatbed truck and lowered into the trench by a crane. The pipe is supported off the bottom of the trench with sand bags or wood timbers. The pipe joints are secured with a full-penetration weld. Each joint is X-rayed to ensure the integrity of the joint and that no intrusions exist that could damage the cable. X-rays are taken in the trench and developed immediately on site in a mobile darkroom so that any repairs can be made before the pipes are backfilled without delaying the progress of the work.

The steel pipe has a polyethylene coating for corrosion protection. The areas at the joints are left bare for welding. After the pipe has been welded and X-rayed, the weld area is coated with a heat-shrink polyethylene coating. The entire pipe coating is then checked for damage with a detector. Any defects found are repaired before the pipes are backfilled.

After the quality control inspections are completed, the trench will be backfilled with flow fill concrete. The flow fill concrete will be delivered to the site in a concrete mixer and discharged directly into the trench. The trench is filled to within about six (6) inches of the existing grade. Although more expensive than conventional soil backfill, the use of flow fill precludes the settling which can occur with compacted soil thus ensuring a better quality road surface. The use of flow fill also provides a degree of physical protection for the pipe. After the flow fill concrete has set up, the asphalt paving will occur.

The total linear work zone for pipe installation varies from 500 feet to 750 feet long. The work zone includes space for the trench itself and the associated construction vehicles such as the dump trucks, pipe trailers, cranes, concrete mixer trucks, etc. The work zone typically progresses at a rate of 100 feet per day, depending on the density of underground utilities, the number of circuits in the trench, and the work restrictions necessary to maintain traffic flow. At the end of each day, the open trench areas that have not been backfilled will be covered with steel plate to maintain traffic flow and/or overnight parking where that exists. The work zone will move past a given location in 6 to 10 work days.

In the areas where the pace of pipe installation is somewhat slower, the overall length of the work zone is typically at the short end of the range. Pipe installation quality control does not end when the trench is backfilled. Every pipe section between manholes is pressure- and vacuum-tested, and the pipe coating is tested.

Traffic Management

NSTAR, in consultation with the City of Cambridge DPW, has developed a traffic management plan for construction in accordance with the Manual of Uniform Traffic Control Devices (MUTCD 2009). Issues addressed in the Traffic Management Plan include:

- Location of the pipeline within the right-of-way to minimize construction impacts to other utilities.
- Width and lane location of the work zone so that the impacts to vehicular traffic are minimized.
- Work schedule and duration of lane closures. Most work will be scheduled during weekday off-peak hours (9:00 AM to 3:00 PM). Some work may need to be scheduled at night or on weekends.
- Routing and protection of pedestrian and bicycle traffic.
- Maintenance of mass transit operations.
- Communication with adjacent businesses so that critical product deliveries are not interrupted by construction.
- Determination of the impact to roadway level of service due to short-term lane closure(s).
- Notification to municipal officials and local businesses of the timing and duration of closed curbside parking spaces.
- NSTAR utilized historic traffic counts from the City Webpage. The traffic data indicates the days and times when lane closures will have the least traffic impact, and will be considered the construction scheduling and the development of traffic management plans.
- Traffic operations will be analyzed according to procedures in the MHD Highway Capacity Manual.
- Manual (Ref. 2). Two conditions will be analyzed:
 - Existing Condition: Mid-day (9:00 AM to 3:00 PM), existing lanes open;
 - Future Condition During Construction: Mid-day (9:00 AM to 3:00 PM), affected lane(s) closed, all other lanes open.

Street Width
For some portion of the routes, there are some residential streets that are very narrow. In the event a section of roadway must be temporarily closed during the day, in consultation with the DPW, a detour planned. The length of any detours and the additional vehicle-miles traveled will be computed.

Temporary Loss of Parking
On several sections of roadway, the pipe trench construction work zone will include curbside parking spaces, requiring short-term parking restrictions. Once the trench alignment is selected, the number (or length) of affected parking spaces will be field verified. A higher number of lost parking spaces (in space-days of construction occupation) indicate a higher impact to parking supply. NSTAR will coordinate and cooperate with the City Traffic Management Department to ensure appropriate traffic management during the Project.

Public Transportation
MBTA Bus operations may be affected during construction. The lane closures may delay bus service, and some bus stops may be temporarily relocated. The length and number of affected bus routes will be computed. MBTA Rail operations will not be affected.

Construction Noise
The potential for elevated noise levels from construction in public roads is a function of the specific receptors along the route. Construction activities (i.e., trenching, pipe installation, backfill, repaving) will be relatively short duration and transient for each of the receptors. The duration of construction at any one receptor location will occur over, at most, a week during
construction. The work day along the pipe route will also be restricted to the most appropriate work hours when progressing through areas with sensitive receptors. In most residential areas, construction will be restricted to the typical daytime work periods, generally after peak commuter times such as 9:00 am to 4:00 PM to avoid adverse traffic flow periods and residential receptors. However, in some locations, such as those completely within commercial and industrial properties, evening construction may be more appropriate.

Another method for limiting the effects of construction noise is to plan specific construction activities with the highest noise potential for specific periods of the day. Activities such as saw cutting of the road surface and ripping pavement and/or rock are likely to create some of the highest levels of construction noise. NSTAR will plan these specific activities to limit the highest noise levels to the more acceptable periods of the day.

Stormwater Runoff, Erosion and Sedimentation Control

NSTAR will obtain a City DPW dewatering permits if required, and seek coverage under the US EPA NPDES General Permit for discharges associated with construction activity. In accordance with these permits, NSTAR will develop a Stormwater Pollution Prevention Plan (“SWPPP”). The prompt removal of all soils from the excavated trench will assure the minimization of impacts to storm drains. Soils will not be stockpiled along the road but instead loaded directly to trucks to be hauled to an offsite disposal area, where proper management will avoid and control runoff. This construction method limits the potential for sedimentation of stormwater.

NSTAR will pump groundwater to another part of the trench excavation to avoid offsite ground/stormwater discharge. In any road where stormwater is directed to a local storm drain, NSTAR will install stormwater filter bags to intercept any sediment. NSTAR construction contractors will also maintain and sweep the road surface in the vicinity of construction to ensure that any spilled soils are rapidly removed from the road surface before those soils can travel to the storm drains or tracked from the construction site in the tires of passing vehicles. At the completion of sealing, the excavations in the roads after construction, the storm drain socks will be removed from the storm drain.

The SWPPP will be prepared as the details of the construction route and construction methods are developed and finalized prior to construction. A copy will be provided to the City. The SWPPP will be updated as necessary, and will be maintained and followed throughout the period of construction.

Dust

Nuisance dust will be controlled along the pipe route by use of appropriate construction methods including watering of all soils in the trench to prevent wind blown soil transport, covering trucks that contain excavated soils, and street sweep at the end of each workday.

Solid Wastes

Construction of the proposed project will generate minor waste materials. All wastes generated along the roads during placement of the steel pipe will be promptly and completely removed and properly disposed in a suitable disposal facility. The bituminous concrete wear and road binder
coats will be recycled at a local asphalt plant. Most of the other material removed from the trench will be clean soils that can be recycled for other projects. Some excavated materials have potential to be contaminated from historic spills before the historical record or from a property adjacent to the project route. The Project soil management plan is enclosed with the P&C Commission application package.

License

NSTAR expects, from pre-construction consultations with the P&C Commission, to enter into a mutually agreeable license agreement with the City specific to the Project, including design and construction protocols and the rights and responsibilities associated with the placement, maintenance and relocation of the pipeline once it is in the ground. In brief, some, though not all, of the requirements that will need to be met prior to construction beginning will include:

- A License Agreement in addition to a Grant of Location, granting the necessary rights to NSTAR to place, operate and maintain the pipeline within City streets.
- Copies of all necessary state and municipal permits. (MWRA (8m) permits, DCR permits, dewatering permits, etc.)
- 200' scale project route map illustrating where the pipe will be placed. A construction management plan including contractor details and contacts, adequate insurance provisions, the incorporation of appropriate stormwater management associated with the construction effort etc.
- Detailed traffic management plans drawn in accordance with the Manual of Uniform Traffic Control Devices (MUTCD 2010).
- An agreement that NSTAR will pay for a peer review in areas where various City infrastructure projects may be adversely impacted.
- Construction oversight provided to the City, paid for by NSTAR.
- Community relations assistance.
- On those streets where street reconstruction will not be required, an agreement as to the payment of a SPOF fee in accordance with City regulations.
- Agreement that soil will be handled and disposed of in strict accordance with the Massachusetts Contingency Plan (MCP), with suitable certification provided by a License Site Professional (LSP) and that the City will not be identified as the generator of any soils that need to be disposed of.
- 200' scale drawings showing details of the various streets to be cold planed and repaved to include reconstruction of all of the adjacent pedestrian ramps as per City 5 year plan guidelines; http://www.cambridgema.gov/theworks/ourservices/engineering/aboutengineering/fiveyearplan.aspx
- An analysis of the impact the construction effort will have on NSTAR gas mains.
- A commitment to provide stamped “as-built” plan and profile drawings in a suitable electronic format.

Upon receipt of approval from the Pole & Conduit Commission the proposed construction would commence. All of the construction will be conducted within the existing paved surface of City streets. NSTAR will repave any streets impacted to ensure that at a minimum the pedestrian ramps at the adjacent corners to the repaving are also reconstructed.
Construction Schedule

The roadway construction is expected to begin in July 2011 and to be completed in November 2011. There are approximately 3.6 miles of pipe to be installed, which will require several pipe installation crews to work simultaneously to complete this work in seven (7) months. Installation crews will be spread out among the different geographic areas to minimize construction impacts and maintain traffic flow in each area.

Community Relations Plan

NSTAR will develop a detailed Community Relations Plan for City coordination and community outreach during construction, including notification to residences and businesses 48 hours prior to street opening on their street, “No Parking” notification and instructions, road closing notification, and street repaving notification procedures, etc.

Please contact Mr. Bill Zamparelli at (617) 369-5532 with any questions or comments on this Project.

Sincerely,

Timothy Reveles
Manager, Electrical Construction
NSTAR Electric Company

Enclosures:

- Page 1 City Authorization form – City to attach License Agreement
- Page 2 Notarized Petition form and,

 Application Fee Calculation

 Check $180./Street $2,160.

 200’ scale drawings of Project Route
- Page 3 NSTAR Acceptance Of Commission Decision
- Page 4 Common Trench Form
- Page 5 Notarized Pole & Conduit Questionnaire
- Page 6 Copy of Public Notice (Abutter Letter)
- Page 7 Notarized Abutter Notification List and,
 Notarized City of Cambridge Tax Assessor FY11 Property Data File
Notice having been given and a public hearing held, as provided by law,

It is hereby ordered:

that the NSTAR Electric Company (NSTAR) is hereby authorized to install its “NSTAR North Cambridge to Putnam Cooling Return Line Project (Substation 509 to Substation 831, Cambridge MA) for the transmission of electricity for heat, light and power within Cambridge.

The authority herein granted is subject to all existing and future ordinances of this City, and regulations of the Pole and Conduit Commission in relation to the locations of ducts and conduits in the streets of this City, and also in reference to the granting of licenses and permits.

The locations herein named are severally indicated upon plan furnished by said Company, dated June 16, 2011 by A. DeBenedictis and filed with the Pole and Conduit Commission.
To the Pole and Conduit Commission
City of Cambridge, Massachusetts

NSTAR Electric Company, a corporation duly organized and existing under the laws of the Commonwealth of Massachusetts, respectfully petitions the Pole and Conduit Commission for permission to construct a pipeline located substantially as shown on the plan made by NSTAR and dated May 20, 2011 for the purpose of supplementing the operation on a existing electric pipe-type cables for lighting, heating, or power upon, along under, or across the following described public Streets in the City of Cambridge.

Specifically, NSTAR is proposing to install a single cooling return pipe in City streets in connection with its existing nearby 115kV electric pipe-type cable transmission lines traversing between NSTAR’s existing substations on Terminal Road near Alewife Brook Parkway in North Cambridge and Putnam Avenue (the “Project”). The Project consists of installing pipe generally within the streets parallel to existing underground utilities, in accordance with City of Cambridge Street Opening Permit requirements, including traffic and pedestrian management plans.

NSTAR ELECTRIC COMPANY

By

John Goggin, Project Manager

Dated this 2nd day of June, 2011

Cambridge, MA

NEREIDA AMARO
Notary Public
Commonwealth of Massachusetts
My Commission Expires: March 9, 2018
NSTAR Electric Company
North Cambridge to Putnam Cooling Return Line Project
Application Fee Calculation $2,160.

City of Cambridge streets impacted from north to south:

Terminal Road
Alewife Brook Parkway
Concord Avenue
Bay State Road
Field Street
Garden Street
Chauncy Street
Waterhouse Street
Massachusetts Avenue
Cambridge Street
Quincy Street
, Massachusetts Avenue (second placement on this street)
Putnam Avenue

12 streets x $180./street = $2,160.
POLE AND CONDUIT QUESTIONNAIRE

NSTAR Electric Company “NSTAR North Cambridge to Putnam Cooling Return Line Project (Substation 509 to Substation 831, Cambridge MA)” in Cambridge streets.

Are you or your company a member of DIGSAFE?

Yes X DIGSAFE NUMBER: Identification No 11898

1. Is your application for fiber optic cables?

 Yes No X

 If yes, how many feet are these fiber optic cables?

2. Have you notified all abutters to properties on either side, behind or across the street from your project?

 Yes X No

Please provide the list of abutters. Please see the attached list

Dated: 6-3-2011 Signed:

Corporate Officer/Authorized Person
Title: Jack Goggin Project Manager
Address: One NSTAR Way Westwood, MA 02090
Phone: 617-548-1722

Commonwealth of Massachusetts

Middlesex, ss.

On this 2nd day of June, 2011, before me the undersigned notary public, personally appeared Timothy Revelles, provided to me through satisfactory evidence of identification, which were personally known to be the person whose name is signed on the preceding or attached document, and who swore or affirmed to me that the contents of the document are truthful and accurate to the best of his/her knowledge and belief.

Notary Public

My Commission expires: 3/9/18
Lead Applicant's Name: NSTAR Electric Company

Legal Address: 800 Boylston Street 17th Floor Boston, MA 02199

Local Address, if applicable: 101 Linwood Avenue Somerville, MA

Contact Person: John Goggin, Project Manager

Telephone Number: 617-548-1722 Fax Number:

Purpose of conduit installation: Facilitate the cooling and the reliability of the existing nearby 115 kV electric transmission lines.

Number of conduits proposed: One 85/8 inch steel pipe
Number of conduits to be used now: One 85/8 inch steel pipe
Number of conduits for future use: None
Is the Lead Company a member of Dig Safe: Yes

Additional Applicants:
Company Name: N/A
Contract Person:
Local Address:
Telephone Number:
Number of conduits requested:
Number of conduits to be used now:
Number of conduits for future use:
June 2, 2011

Notice is hereby given that a public hearing will be held on Thursday, June 16, 2011 at 10:00 AM before the Pole and Conduit Commission, 831 Massachusetts Avenue, on the petition of NSTAR Electric Company ("NSTAR") for the right to lay and maintain pipe in the streets of the City of Cambridge with the service connections for the existing NSTAR electric transmission pipe-type cable at the locations described below.

Specifically, NSTAR is proposing to install cooling return pipe in City streets in connection with its existing nearby 115kV electric pipe-type cable transmission lines traversing between NSTAR’s existing substations on Terminal Road near Alewife Brook Parkway in North Cambridge and Putnam Avenue (the “Project”). The Project consists of installing pipe generally within the streets parallel to existing underground utilities, in accordance with City of Cambridge Street Opening Permit requirements, including traffic and pedestrian management plans.

If you would like to speak with an NSTAR representative for the Project, please contact Mr. William Zamparelli at (617) 369-5532.

Sincerely,

Timothy Revellese,
Manager, Electrical Construction
NSTAR Electric Company
Fill out the following certificate, have this form notarized and return this form and cards to the License Commission, 831 Massachusetts Avenue, 1st floor, Cambridge, 02139

Date of Hearing: June 16, 2011

I hereby certify that I am the person who has applied to the Pole and Conduit Commissioners for a license for the NSTAR Cooling Return Pipeline Project in the City of Cambridge, Massachusetts. I mailed the publication a notice of such publication to all owners of real estate abutting on said land and that the names and addresses of all the said abutters are as follows: (Continue list of abutter on reverse if needed).

<table>
<thead>
<tr>
<th>Property</th>
<th>Owner</th>
<th>Address</th>
</tr>
</thead>
</table>

PLEASE SEE ATTACHED ABUTTER LIST.

Signed: [Signature]

Commonwealth of Massachusetts

Middlesex, ss.

On this 2nd day of June 2011, before me, the undersigned notary public, personally appeared Beverly Schultz, provided to me through satisfactory evidence of identification, which were personal knowledge to be the person whose name is signed on the preceding or attached document, and who swore or affirmed to me that the contents of the document are truthful and accurate to the best of his/her knowledge and belief.

[Signature]

Notary Public

My Commission Expires: March 5, 2015