We propose in this article to give what facts and numbers we have been able to collect concerning our main and department libraries. For two very good reasons the Institute cannot properly arrange, as we should like to have it do, the books, etc., owned or deposited here. The first reason is want of funds; the second, want of room. To obtain the latter, the first, in the main, must be obtained. More room, however, could be obtained with a little better arrangement, which the present condition admits of. The first is obviously the objective reason to be overcome. If funds were to be had, room could be supplied in the shape of a new building. In the mean time the books, papers, pamphlets, drawings, etc., are scattered through the various departments. This is fairly well, but the professors can't have a person on hand to supply a demand at any moment.

The main or reading-room library is largely made up of books belonging to Prof. Rogers. These constitute what is known as the "Rogers Library," which has at present 850 volumes. It seems as if this library might be fitted with shelves, and a catalogue made, with very little expense. It is the custom of many schools and colleges to expect donations from the scholars, to assist in forming a library. It might, then, be a good plan for the lovers of the Institute to start a subscription paper and have the library put in ship-shape order. It would be a great benefit to all.

The next large library available is that owned by Prof. Atkinson. It makes up but a fraction of his possessions, yet it contains 1,875 bound volumes. The Physical Library has about 525 volumes, and contains probably the most valuable books in the Institute. The best set is that of Silliman's Journal. It dates from 1818, and is complete to the present day, making a splendid set of 120 volumes. This library also contains almost a complete set of the Philosophical Magazine, dating from 1798, and comprising 142 volumes. There is a bad break, however, between 1854 and 1872. It also contains other sets, good as far as they go, the best in the physical line being Poggendorff's, afterwards conducted by Weidemann. The books, etc., belonging to the Civil-Engineering Department are soon to be put in tip-top shape, and also increased in number. It will contain, with Prof. Vose's books, about 400 volumes. Besides these, it has several hundred French, German, and English engravings and drawings. It also contains a few books and manuscript drawings of Mr. James Hayward, one of Boston's first and best engineers.
The Chemical (Quantitative) Library is kept in excellent condition. It has about 250 volumes, besides many of Prof. Wing's books. In this library many good books are to be found, such as "Fresenius's Zeitschrift," "Chemical News," "Annalen der Chemie," etc. In the Architectural Department there are 400 standard works. The department has also about 3,000 beautiful and valuable photographs, engravings, etc. For the mechanicals, there are 275 volumes owned by the Institute, and 400 belonging to Prof. Whitaker. Drawings, etc., they have almost without number. In the Geological Department there are about 175 volumes, some of which are included in the "Rogers Library." In this library are to be found sixteen volumes of the "Geology and Natural History of New York," many State surveys, and a goodly number of United States surveys by Hayden, Wheeler, King, and many other eminent geologists. The Mining Department has, we regret to say, no representative library; but many good books on metallurgy, etc., are to be had at any time.

We understand that Gen. Walker, our new president, has sent here several hundred volumes, some of which he intends to donate to the school. In conclusion, we would say that there are in the building, for students' use, about 5,000 volumes.

In our last issue a correspondent, in giving a description of Messrs. Kendall & Roberts's boiler shops, has been, perhaps, unnecessarily critical. The mechanical engineers were invited, as students of the Institute, to visit the works, and gain, by observation and questions, as much information as possible on boiler construction. The proprietors were kind enough to give them the opportunity, which others do not have, of examining the operations in detail and even to interrupt the work of the men by questions which were always pleasantly answered. While we do not doubt our correspondent relates facts as he saw them, we think it would have been more courteous to have passed over these minor detractions and have described instead some of the first-class work of the shops. For instance, the use of sharp punches, a matter often neglected elsewhere to the great detriment of the plates; also the great care in fitting the plates by accurately spacing the rivet-holes and thus avoiding the reckless use of the drift. Messrs. Kendall & Roberts are a firm whose reputation for good work and good material has been long established, and the mechanical engineers should consider themselves fortunate in having been able to visit their works.

Contributions.

The Importance of a Liberal Education.

PROF. WILLIAM R. WARE, in a paper read before the Worcester Free Institute of Technology, clearly puts the distinction between the aims and objects of industrial schools on the one hand and classical colleges on the other. The primary object of an industrial school is to give the student such knowledge as will enable him to earn his own living early in life. A classical college, however, aims more exclusively to the abstract development of the mind, fitting a man to take the higher positions in the various walks of life, while the matter of dollars and cents knowledge is with him of secondary importance, as that is left for the professional schools after graduation.

The technical school takes neither one extreme position nor the other, but one between the two. It endeavors to give a course of training that will enable a student to gain a livelihood moderately early in life, and at the same time give him a more or less liberal education. This seems to define, with more or less accuracy, the position taken by our Institute.

As scientific students, the tendency with us is to attach too little importance to studies which do not bear directly upon our professional work. In doing so we make a great mistake. In order to take the higher positions, we must have enlightened ideas and broad views. It is not
the mind that constructs the railroad that takes
the most important place, but the mind that can
detect the influence that the railroad will have
upon the country through which it passes, and
the natural forces that will be brought into ac-
tion by the development of industries, and the
profits that will accrue from such development.

Do not think, then, that the studies that do not
point straight to the particular mark at which
you are aiming are of no importance. What
we need more than an education in one exclusive
branch of study is a liberal education,—which,
while giving us a reasonable knowledge of our
professions from practical standpoints, will at the
same time develop us in mind and body and give
us managing ability and sound common-sense.

G. A. M.

Our Athletic Sports.

To one who would have physical develop-
ment keep pace with mental attainment, it
seems hardly creditable to the Institute that so
large a majority of the students should manifest
so much apathy towards athletic sports. The
roll of membership of our Athletic Club shows
very few names in comparison to the number on
the Institute catalogue, and even among those
few names not more than twenty can be picked
out whose owners do really good, honest work.

Now it strikes us that this state of things is
not at all as it should be. The Athletic Club
endeavors, by awarding prizes at competitive
games, to create among its members a spirit of
 emulation to excel in different feats of strength
and agility. It supplies a stimulus for a man to
harden and develop himself for some contest,
and, at the same time, causes him to lay up un-
consciously a store of strength for the future.

We would have every man in the Institute
a member of the club. There can be no
excuse in regard to expense, for the fees are
very low, barely covering the cost of the games.
We would have every member devote at least
an hour a day to the gymnasium, and above all,
we would have every man that can do anything
in the way of athletics moderately well respond
promptly and to the best of his ability when en-
tries are asked for the different events of the
cub games.

Were every man to do as we urge, our prin-
cipal games, instead of being, as they are now,
exhibitions of the result of the work of a few
men, gazed on by men too lazy to endeavor to
be worthy to compete and too indifferent to be-
come members of the club, our games would
then be the public examinations of our year's
work, in which those who most excelled would
compete; while those that looked on, fellow-
members, would enter truly into the spirit of
the occasion, knowing that, while they took no
part then, they had at least the satisfaction of
feeling that they had done their share of work
and support, and that some future time would
bring them honors too.

Let us then, fellow-students, enter into our
physical development with as much zeal as we
do into our mental development; and strive,
with all our endeavors, to make ours an athletic
club indeed.

Our Little Jokers.

The Institute is probably blessed with as
many jokers as any college of the same size,
and the character of their jokes goes a great
way towards showing the very superior training
given in the primary and grammar schools of
the present day. The most prominent things
about our jokers are the great variety and the
extensive originality of their wit, and also the
extensive fields over which their efforts extend.

The following pretty and amusing game has
been introduced by one of these individuals, and
will recommend itself to all on account of its
simplicity and the cheapness of the outfit. The
game is played by as many as care to do so.
The necessary articles are a pin bent into the
form of a hook, and a piece of paper about
three inches square. One of the players first
writes on the paper, “What is it?” or any query
of a similar nature. He then chooses a victim,
and by means of the pin, attaches the paper to
a conspicuous place on his coat; if the player
contrives to do this unobserved, he grins and
scores one point. An entire class may be amused in this way by the antics of a single individual.

We have one joker who is very selfish, and makes jokes which he alone enjoys. It is the man who makes poor puns,—puns, in fact, which would curdle the blood of the most rugged architect in the Institute. We do not possess a sufficiently large number of these curiosities to start a museum with, and thus make our collection a source of income to the Institute; but there are enough untamed specimens of the species roaming about to make life "quite intensely" disagreeable in some parts of the building. The clock in the third-year laboratory has stopped occasionally during the term; and although it is probably due in a great measure to the selections from "Pinafore" given by the gentleman at desk No. 22, the principal cause is the poor puns, of which there seems to be an unlimited number at desk No. 20. When things have gone as far as this, it is time for energetic measures to be taken either for the abatement of the nuisance or the suppression of the cause.

We have another playful individual, who pours water on the seats of chairs and stools; also, one who drops old junk down your back and waste paper in your pocket; and still another fiend, who goes around and exercises his lungs at the doors of lecture-rooms. It would be nearly impossible to mention all the jokes which are played. Of their high character it is unnecessary to speak; it is sufficient to say that they are all like those mentioned. Spectators should take their time from the perpetrator of the joke, and laugh when he does; this gives uniformity to the proceedings, and lends an additional charm to the joke. These few remarks are intended to call attention to the great amount of wit which circulates amongst us, and by slight explanations of the intricacies of specimen jokes, to enable each and every one to appreciate the fine points,—some of which are so fine that they might be overlooked.

The Fairbanks Testing Machine.

DURING the past summer the Institute, through the exertions of Prof. Lanza, added to its apparatus for instruction a Fairbanks testing machine, formerly used in the Pennsylvania Railroad shops. This machine is now in position in the basement of the Institute building, and affords the students an excellent opportunity for good, practical work in testing the strength of materials. The principle of the machine, as well as its construction and operation, is quite simple.

In Fig. 1, the machine is shown in elevation. The portion of the frame Q Q Q Q nearest the observer is broken away in order to show the arrangement of the holders E and F. Suspended upon the knife edges at A is an iron bar; the distance A B being 100 in. Upon this bar are two more knife edges at C and D, supporting the piece X Z Y, which in turn supports the holder E. The distances A C and A D are equal, but X Z exceeds Y Z by .2 in. Hence the knife edges at Z are just .1 in. to the right of a vertical line passing through A. This portion of the machine thus forms the equivalent of a simple lever, with one arm 100 in. and the other .1 in. long. Therefore, a load of 1 lb. at B will balance or 1,000 lbs. on the holder E. The beam itself may be balanced by screwing the weighted cylinder U in the required direction.

The ends of the piece to be tested are held by E and F, as described farther on. The holder F is attached to the lever L G K at G, K forming the fulcrum. The distance L K is 66 in. and G K 6 in. Hence a load of 1 lb. applied at L will produce the same effect as 11 lbs. applied at G. The screw O passes through the collar P, which, being rotated by means of the handles R R, causes the screw to ascend or descend, according to the direction of rotation of the collar. As the screw O is 22 in. long, its descent through that distance causes the holder F to descend also, but through only one eleventh of that distance, or 2 in. Therefore, 2 in. is the greatest stretch which can be pro-
duced in a specimen at a single grip. It is thus seen that the stress is produced by the screw O and lever L G K, while the beam A B and the weights in the scale pan T simply indicate the intensity of that stress.

The specimen H H is held in position by means of wedges, as shown in Fig. 2. The faces of these wedges next the specimen are shaped to suit its form, and being cross-cut like the surface of a file, are enabled to grip it securely. Just before securing the specimen in the lower holder F, the lever M is depressed, causing K and G to ascend. While in this position, the piece is finally secured and the nut N screwed up tightly against the frame at S. K is thus caused to descend slightly, and a stress is produced in the specimen. This stress may vary from 6,000 to 12,000 lbs. according to the strength of the operator. A total stress of 50,000 lbs. may with safety be produced in the specimen. The specimen to be tested for tensile strength must not exceed 1½ in. × 1½ in. × 12½ in.

Let us follow the operation of determining the tensile strength of a piece of iron, — a strip of boiler plate, for instance. Having been cut to the proper dimensions and the sectional area ascertained, it is wedged into position in the holders, the lower holder F being raised by means of the lever M. The nut N is now screwed up tightly against S, the long beam being, at the same time, kept balanced by placing weights in the scale pan T. The screw O may now be drawn down by turning the handles in the proper direction, the long beam being always kept balanced. This is continued until the piece is broken. The weight upon the scale pan T necessary to keep the beam balanced just before the specimen broke, multiplied by 1,000, is the total stress under which it broke. Knowing the sectional area, the strength per square inch can be readily calculated. In the case of steel, which is more ductile than cast or wrought iron, it is often necessary to take a second grip before the piece can be broken.

The importance of the testing machine and the knowledge which it affords us is every day becoming more keenly felt. Many structures in which perfect security was desired have been erected with no better knowledge of the strength of the materials used than that obtained by calculation, or from the results of a very few exper-
iments. The folly of such a mode of procedure is plainly shown by the frequent failures of such structures. Manufacturers and builders are being brought face to face with the fact that in order to be able to place any degree of confidence in the materials employed, they must be subjected to such tests as shall determine their strength in the particular places which they must occupy, and under the peculiar conditions which must exist in the completed structure. The importance of the above is most forcibly demonstrated by the fact that the grand medal of honor offered by the Massachusetts Charitable Mechanic Association "for the invention most conducive to human welfare" was this year awarded to Mr. A. H. Emery for his testing machine at the Watertown Arsenal.

WILLIAM BARTON ROGERS, the second son of four in a family noted for its scientific acquirements, was born in the city of Philadelphia, in the month of December, in the year 1805. His early education was under the immediate charge of his father, but was continued later, though largely under the same guidance, at William and Mary College.

At the early age of 21, we find him delivering at the Maryland Institute, Baltimore, his first lectures on science, and one year later he succeeded his father as professor of natural philosophy and chemistry, at William and Mary College. About eight years later, in the year 1835, he accepted the appointment to the chair of natural philosophy in the University of Virginia, and it is here also that he first began instructing in mineralogy and geology.

During the years between 1835 and 1842 he was at the head of a geological organization, which made a survey of the State of Virginia, and published annual reports upon the same, together with much valuable material which had been carefully collected. This period of his life was a very busy and attractive one, much of his time being given to original work in the field of geology, and largely also in the science of chemistry and physics.

Prof. Rogers, while a member of the Association of American Geologists, was elected a number of times its chairman, and took an active interest in all its proceedings, contributing many valuable memoirs to its transactions. He presided at the meeting which expanded this last-mentioned society into the "American Association for the Advancement of Science."

In 1853, Prof. Rogers removed to Boston, where he at once identified himself with the prominent and still growing educational interests of the city.

In connection with a committee of gentlemen, no less interested than himself in the establishment in Boston of a school which should place the teachings of science upon a more practical plane than had hitherto been attempted, he drew up a scheme entitled "Object and Plan of an Institute of Technology," and embraced therein also a school of industrial science, a museum of arts, and a society of arts.

To the accomplishment of this purpose Prof. Rogers bent every energy, and at length a charter from the State was granted, providing the land upon which the Institute buildings now stand. Subsequently, the plans prepared by Prof. Rogers were almost completely carried out; and he, more perhaps than any other one man, brought about that admirable system of teaching which so characterizes the Institute, and which finds its place in the laboratories.

Prof. Rogers's connection with the Institute has been a most prominent one. Connected with it in its very conception, he occupied the chair as president for many years, and at the start was at the head of the department of physics and geology.

As a speaker and lecturer Prof. Rogers stands almost unmatched. Earnest in manner, profound in wisdom, clear and concise in thought, his lectures and addresses interest and even arouse an audience to such an enthusiasm as only our most eloquent orators succeed in doing. To his high and extraordinary scientific attainments is added a personality which, by its integrity, its earnestness, its simplicity, its
warm-heartedness, attracts and develops all that is best and noblest in those with whom he comes in contact.

Failing health has compelled him, at the age of seventy-six, to withdraw from an active participation in those labors which have been his delight and strength.

But his farewell address to the class of '80, as they stepped forth from four years of study at the Institute, can never be forgotten by those to whom it was addressed. His "God-speed," filled with an emotion like that which springs from father to child, is echoed back again to him from those hearts which, in contemplation of his worthy and noble life, find so much therein to strengthen and secure their own.

A fine saccharometer of improved pattern, made by Leon Laurent, Paris, has been purchased for the chemical laboratory.

The mechanicals have formally organized a debating society, and will hold meetings on Thursday afternoons of each week. Subjects of interest will be discussed, and papers read by members. At the first meeting, G. J. Foran, '83, gave an interesting description of steam-pump valve action. Subjects for debate were selected for the two following meetings. Our lack of space forbids a more extended notice of this issue.

A sp. '83 left two platinum electrodes in his beaker over night. During his absence some one took them. When he saw the disappearance in the morning, he remarked in all seriousness that he thought one of his electrodes had gone into the solution,—which, by the way, was nitric acid.

A new departure for the graduating chemists and miners has been inaugurated. Each student is assigned some method for the quantitative determination of some element. He is to look up the subject, and through accurate testing, find out whether that particular method is accurate under any condition or not. This year a method for determining copper was assigned to each.

Mineral and Chemistry.

WHO's in the muffle?

Another successful attempt in the way of diamond making is heard of through the proceedings of the Royal Society of Edinburgh. The successful scientist is Mr. R. S. Marsden, the materials sugar and silver. The charcoal of sugar is heated with silver for ten hours, cooled slowly, and the silver dissolved out by nitric acid. The diamonds are found mixed with carbon in other forms. Mr. Marsden hopes to be able soon to produce diamonds large enough for rock-boring. Wonderful as this exploit is, however, it is hardly so much so in a scientific point of view as that of a student in our own laboratory, who has succeeded in dissolving a platinum electrode in dilute nitric acid, though his subsequent attempt to precipitate the platinum by H_2S has not yet met with much success.

The preliminary report of the Royal Commission appointed in England in 1879, to examine into the causes of accidents in mines, has been handed in. The report states that no lamp yet invented is safe in a rapid current of air, though a Davy lamp enclosed in an outer case of glass is safe under ordinary circumstances. Experiments made with the incandescent electric light promise well. Suspended dust is found to be a very important cause of explosions, dust of any kind rendering highly dangerous a percentage of fire damp which would be perfectly harmless in air alone. No satisfactory explanation of this fact has yet been offered.

Mr. Faunce's copper tailings from the Calumet and Hecla, containing $4\frac{1}{10}$ per cent of copper, yielded after concentration about 60 per cent of copper. Tailings from Evans's table, $1\frac{7}{10}$ per cent. Tailings from jig, $2\frac{5}{10}$ per cent. Middlings from jig, $5\frac{2}{10}$ per cent.

Mr. Munroe, '82, has commenced roasting some Vershire copper ore from Ely, Vermont. The roasting lasts about thirty-five consecutive hours. This ore contains both chalcopyrite and pyrrhotite.
Sporting Notes.

SEVERAL men are taking lessons in the "manly art" of Prof. Burris, and certain it is they could not have a better instructor.

Four nine on standing high is not so bad, Mr. Vaulter.

Another striking illustration of the old adage, "a new broom," etc., is found in the person of our new gymnasium janitor, who seems to be just the man we have been looking for.

Probably all the members of the M. I. T. A. C. have seen the notice of the games for the 7th, and yet the worthy secretary assures us that he has not been overburdened with entries. This will never do, — we must brace up.

If the small boys could be cleared out of the gymnasium, we might manage to have more room for exercise. As it is now, the gymnasium seems to be run for the benefit of Chauncy Hall and West End knickerbockers, to the disadvantage of our own men.

We have just received a note suggesting the advisability of forming an Institute lacrosse team. The writer uses the argument in support of the game, that it "develops endurance and quickness of eye and action; and in addition, renders each good player of necessity a graceful, agile runner." Comment is unnecessary; the game itself is a capital one, and if we could get some place for practice, we might act upon the suggestion. We would be glad to hear from others on the same subject.

The George Wright Ball and Spaulding's Base Ball Guide have been adopted for the ensuing year by the College Association.

According to the Colby Echo, there are prospects of the nine making a tour of New England colleges the coming season.

The winter meeting of the Athletic Club will be held in the gymnasium Saturday, Jan. 7. Members will be admitted on the membership ticket; an admission fee will be charged all others.

In General.

HAPPY NEW YEAR!

N. G. — No gaiters for the Freshmen.

Has Snelling been on the roof this year?

Another lot of the Freshmen have begun Qualitative Analysis.

"Where is that stick? Does anybody see that stick?"

There seems to be hope for an actual steam laboratory — some time.

The senior architects have found arches all they expected, and more too.

The class in advanced French is reading the tragedy of Her-nani-(goat?).

The advent of the Freshmen into the Institute social world occurred last Thursday.

Why do our doctors always prescribe some tonic for us? We are already Teu-tonic.

Two men were recently initiated into 2 G; they were able to crawl around the next morning.

Our doctor tells us we are overworked, and has advised us to stop studying between meals.

A chance for the civils to survey the Ross field in preparation for filling next spring.

Since the visit to the refinery, Smith's restaurant profits have increased. "Sugar, sah?" — "No, thanks; I know it."

The new problem for the senior architects is, "A way station on the outskirts of a considerable country town."

The enjoyment and profit which the mechanics derive from peering through the window of the model-room are hardly calculable!

The '82 architects are rarely seen in the laboratories. Go down, brothers, and pay the miners and chemists a visit.

The lot on the corner of Boylston and Berkeley Streets will be occupied by the new building of the B. Y. M. C. A.

One of the miners went through a plate-glass door in the chemical laboratory last week; it was shortly after dinner.
Prof. L. — "When I make a mistake at the board, I should like to have you pick me up. I'm used to being picked up."

An '82 chemist, after considerable sputtering, cried out that he had got a mouthful of acid. A brother chemist dryly asked if his teeth effervesced any. All sit.

A great many students have asked what the windows under the front stairs were for. We will answer the question once for all: They are to admit light to the steam laboratory.

It is bad enough to have a cataract in your eye, but Die Sage vom Hirschgulden tells of a man who had two mountains fall in his eye.

It is about time for '82 to hold a class meeting to see about the class pictures. The earlier the better. The photographers are ready, and the sunshiny days don't come seven times a week.

The '82 physicist has been working on the comparison of the alcohol and the air thermometer. He finds that for 20 below freezing the alcohol thermometer is .6 of a degree lower than the air thermometer.

Among other useless things which are at present taking up room at the steam laboratory is a collection of fancy woods, including some gopherwood; we would thank any one that would go for the whole of it.

During the past week two watches and some money were stolen from the gym. This is not the first time that this thing has been done, and there should be some protection for the students who desire to exercise.

The men to form the artillery detachment of the C. C. M. I. T. were selected ten days ago, and have begun their work. The platoon is commanded by Major Pratt, with Capts. Hunt and Damon as gunners. It is the intention of the officers to have their men ready for the semiannual drill, and to form new squads for the annual drill.

The testing machine is soon to be fitted for testing the transverse strength of beams and girders. The tests of wooden beams will be made upon average pieces of the size commonly employed in construction, and not, as has often been the case, upon selected specimens of small size. By the new arrangement, wooden beams as large as 6 in. x 14 in. x 25 ft. may be broken. The results will probably differ greatly from those calculated for the same beams by formula based upon the results of experiments on small and comparatively perfect specimens.

The ball given by the Freshmen, Dec. 22, in Odd Fellows' Hall, was a most successful and enjoyable affair. About one hundred and twenty-five couples were present. The fashion reporter of The Tech being unavoidably absent, we must confess our ignorance as to whether the majority of dresses were cut bias on a polonaise and whether they were decorated with Spanish lace or cafe au lait. Their general effectiveness was testified to by the appalling number of Freshmen suffering from abstraction of the heart. The party broke up about noon, — New Zealand time, — and everybody, from the Freshies, who had spent the evening waltzing in each others' arms through the corridors, to the belles who were engaged for the eighth extra, mentally shook hands with and congratulated '85. The thanks of the class and the Institute in general are due to the committee with their aids, and particularly to Mr. McKim, for the efficient manner in which the ball was managed.

Exchanges.

During the Tech's short life so far, exchanges have come in too fast to be systematized before this issue, and order brought out of the chaos incident to the beginning of our paper. But our list seems to be nearly completed, and perhaps we may now consider ourselves prepared to carry on an exchange column in earnest.

Many of our exchanges have given us kindly notices and applauded our humble efforts; tempering their praise, however, with criticisms and suggestions which we have duly accepted and will strive to be grateful for. In some instan-
ces our first number appears to have arrived just in time for a possibly dyspeptic editor to wreak upon us the full measure of his wrath; but our hearts are large; we may be there ourselves some time, and we let him pass unannihilated. In one case a certain football match seems to rankle deeply in the editorial heart! Never mind, friend Student: if there is any game that you can play better, we shall be only too happy to accommodate — in the spring.

The Atlantic Monthly opens the new year with a number that promises the continuance of this favorite magazine in the first rank. A new serial by George Parsons Lathrop takes the place of James's long story, "The Portrait of a Lady." The latter artist, as we think, left his canvas only half finished, and his readers in a very irate state of mind. An author surely owes something to his readers, and is, or ought to be, bound to end his tale in a manner that shall leave them satisfied, or at least not incensed. Howells's "Police Report," "A San Juan Fête" by H. H., and an article on the "Prominence of Athleticism in England," are among the good things of the January number.

Among college papers received, the Columbia Spectator, in our opinion, leads in typographical appearance. This number contains an interesting description of the last run of the college Hare and Hounds Association, and an account of a "Bloodless Duel" between two hot-headed members of the class of '84. The gory-minded challenger demanded broadswords, but revolvers were finally decided on. Blank cartridges being provided, an exchange of shots ensued, and the farce was still further carried out until the G. M., thinking his adversary mortally wounded, fled from the field. The jeers of his classmates when the tale was revealed, and he found himself the victim of a trick, have probably given this youth a salutary lesson.

The Beacon appears in holiday garb, opening with three Christmas poems. The second is certainly A-Musing. We sincerely trust that "the fair angel bride" will "forgive the scandal 'bout" the author in the "moss-festered window."

"A new exchange appears on our list since the last issue of the Beacon; namely, the Tech." Great I and little u; however, we are content. The Tuftonian wishes us a longer life than our predecessor. Much obliged, Tuffy; we shall strive to make the Tech more than a spectre of the Spectrum.

Trinity Tablet presents a cartoon of the principal college events of its past year. The Tablet is well printed and the editorial work well done.

The Oxford cap is now worn at Princeton, Williams, Columbia, Trinity, University of New York, and Brown University. The rumor is afloat that our Tuftonian friends are likely soon to mortar-fy themselves likewise.

"Would n't you like a bow?" said he at the archery match; and she murmured "Yes." "What kind of a bow would you prefer?" and she replied archly, "I think I should prefer yew."—Ex.

"I know," said the little girl to her elder sister's young man at the supper-table, "that you will join our society for the protection of little birds, because mamma says you are very fond of larks." Then there was a silence, and the Limburger cheese might have been heard scrambling around in its tin box on the cupboard shelf.—Ex.

The Modern Damsel.
She's an awfully cute young girl, A spit-curl and frizzes young girl, A languishing, dainty, all powdery and painty, Sit-up-at-eleven young girl.

She's a would-be-aesthetic young girl, A dote-on-the-arts young girl, A poet-in-embryo, don't-know-a-thing, you know, All-on-the-surface young girl.

She's a novel-reading young girl, A lie-awake-until-three young girl, A romantic, half-crazy, but terribly lazy, Let ma-do-the-work young girl.

She's looking-out-for-a-catch young girl, A snatch-em-up-quick young girl, A half-do-the-proposing, bag'-em-when-dozing, Hold-on-to-the-game young girl.—Ex.
JEWELRY FOR GENTLEMEN.

Watches, sleeve buttons, sleeve links, stud, collar studs, scarf rings, scarf pins, seal rings.

Designs furnished, and special articles made to order.

BIGELOW, KENNARD & CO.

511 Washington Street.

LITTLE, BROWN & CO.

Scientific Books.

A large stock of Books in all branches of science always on hand. Catalogue sent on application.

Also, Standard Works in General Literature, in cloth and fine bindings.

254 WASHINGTON STREET,

BOSTON, MASS.

DOE, HUNNEWELL & CO.

MANUFACTURERS OF

FIRST-CLASS FURNITURE,

Mantels, Mirrors, Drapery Curtains, Lace Curtains, Window Shades, Etc.

IMPORTERS OF UPHOLSTERY GOODS.

Special attention given to furnishing apartments throughout, including the standing finish newels, doors, decorations, drapery, curtains, furniture, etc.

Nos. 577 and 579 Washington Street

BOSTON.

E. R. HUNNEWELL.

H. F. BURCHSTEAD.

BUY

Blue, Gray and White
Milled Suitings

—BICYCLE COSTUMES

—AT

SHEPARD, NORWELL & CO.

WINTER STREET, BOSTON.

The Harvard Bicycles

AND

Tricycles

CUNNINGHAM & CO.

Odd Fellows' Hall, Boston.

Send three-cent stamp for our Illustrated Catalogue.

HENRY F. MILLER,

Piano-Forte Manufacturer - - - Boston, Mass.

CENTEMERI KID GLOVE CO.

2-Button (all shades)...$1.40

2-Button Emb. (French Dog Skin)..........................1.85

2-Button Black (finest quality)............................1.85

Only best quality of French kid used.
Our own manufacture and importation.
All Gloves put on, fitted perfectly, and warranted.

Remember the genuine Centemeri Gloves are sold only at

17 TEMPLE PLACE - - - BOSTON.
CODMAN & SHURTLEFF,
167 TREMONT STREET, BOSTON,
DEALERS IN
GOLD, PLATINUM AND SILVER,
IN THE FORMS OF
PLATE, WIRE and FOIL. PLATINUM CRUCIBLES, BLOWPIPES, Etc.
FLETCHER'S (English) HEATING APPARATUS Furnished at Manufacturers' Lowest Prices.

HOVEY, *FLORIST,*
ARTISTIC FLORAL DECORATOR,
BOUQUETS, WEDDING AND PARTY DECORATIONS. CHASTE FUNERAL DESIGNS a Specialty.
69 Tremont Street - - - - Under Tremont House.

THE STYLOGRAPHIC PEN,
FOR SALE BY
JOHN DUFF, JR. - - - - Institute of Technology.
SPECIAL RATES TO STUDENTS.